All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.associate.AssociateGreedy Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2020, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.associate;

import boofcv.abst.feature.associate.ScoreAssociation;
import boofcv.struct.feature.TupleDesc_F64;
import org.ddogleg.struct.FastAccess;

//CONCURRENT_INLINE import boofcv.concurrency.BoofConcurrency;

/**
 * 

* Brute force greedy association for objects described by a {@link TupleDesc_F64}. An * object is associated with whichever object has the best fit score and every possible combination * is examined. If there are a large number of features this can be quite slow. *

* *

* Optionally, backwards validation can be used to reduce the number of false associations. * Backwards validation works by checking to see if two objects are mutually the best association * for each other. First an association is found from src to dst, then the best fit in dst is * associated with feature in src. *

* * @param Feature description type. * * @author Peter Abeles */ @SuppressWarnings({"Duplicates"}) public class AssociateGreedy extends AssociateGreedyBase { /** * Configure association * * @param score Computes the association score. * @param backwardsValidation If true then backwards validation is performed. */ public AssociateGreedy(ScoreAssociation score, boolean backwardsValidation) { super(score,backwardsValidation); } /** * Associates the two sets objects against each other by minimizing fit score. * * @param src Source list. * @param dst Destination list. */ @Override public void associate(FastAccess src , FastAccess dst ) { fitQuality.reset(); pairs.reset(); workBuffer.reset(); pairs.resize(src.size); fitQuality.resize(src.size); workBuffer.resize(src.size*dst.size); final double ratioTest = this.ratioTest; //CONCURRENT_BELOW BoofConcurrency.loopFor(0, src.size, i -> { for( int i = 0; i < src.size; i++ ) { D a = src.data[i]; double bestScore = maxFitError; double secondBest = bestScore; int bestIndex = -1; final int workIdx = i*dst.size; for( int j = 0; j < dst.size; j++ ) { D b = dst.data[j]; double fit = score.score(a,b); workBuffer.set(workIdx+j,fit); if( fit <= bestScore ) { bestIndex = j; secondBest = bestScore; bestScore = fit; } } if( ratioTest < 1.0 && bestIndex != -1 && bestScore != 0.0 ) { // the second best could lie after the best was seen for (int j = bestIndex+1; j < dst.size; j++) { double fit = workBuffer.get(workIdx+j); if( fit < secondBest ) { secondBest = fit; } } pairs.set(i,secondBest*ratioTest >= bestScore ? bestIndex : -1); } else { pairs.set(i,bestIndex); } fitQuality.set(i,bestScore); } //CONCURRENT_ABOVE }); if( backwardsValidation ) { //CONCURRENT_BELOW BoofConcurrency.loopFor(0, src.size, i -> { for( int i = 0; i < src.size; i++ ) { int match = pairs.data[i]; if( match == -1 ) //CONCURRENT_BELOW return; continue; double scoreToBeat = workBuffer.data[i*dst.size+match]; for( int j = 0; j < src.size; j++ , match += dst.size ) { if( workBuffer.data[match] <= scoreToBeat && j != i) { pairs.data[i] = -1; fitQuality.data[i] = Double.MAX_VALUE; break; } } } //CONCURRENT_ABOVE }); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy