boofcv.alg.feature.detdesc.CompleteSift Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-feature Show documentation
Show all versions of boofcv-feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2020, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.detdesc;
import boofcv.abst.feature.detect.extract.NonMaxLimiter;
import boofcv.abst.filter.derivative.ImageGradient;
import boofcv.alg.feature.describe.DescribePointSift;
import boofcv.alg.feature.detect.interest.SiftDetector;
import boofcv.alg.feature.detect.interest.SiftScaleSpace;
import boofcv.alg.feature.orientation.OrientationHistogramSift;
import boofcv.factory.filter.derivative.FactoryDerivative;
import boofcv.struct.feature.BrightFeature;
import boofcv.struct.feature.ScalePoint;
import boofcv.struct.image.GrayF32;
import org.ddogleg.struct.FastAccess;
import org.ddogleg.struct.FastArray;
import org.ddogleg.struct.FastQueue;
import org.ddogleg.struct.GrowQueue_F64;
/**
* SIFT combined together to simultaneously detect and describe the key points it finds. Memory is conserved by
* only having one octave of the scale-space in memory at any given time.
*
* @see OrientationHistogramSift
* @see DescribePointSift
* @see SiftDetector
*
* @author Peter Abeles
*/
public class CompleteSift extends SiftDetector
{
// estimate orientation
OrientationHistogramSift orientation;
// describes the keypoints
DescribePointSift describe;
// storage for found features
FastQueue features;
// found orientations and feature locations
FastArray locations = new FastArray<>(ScalePoint.class);
GrowQueue_F64 orientations = new GrowQueue_F64();
// used to compute the image gradient
ImageGradient gradient = FactoryDerivative.three(GrayF32.class,null);
// spacial derivative for the current scale in the octave
GrayF32 derivX = new GrayF32(1,1);
GrayF32 derivY = new GrayF32(1,1);
/**
* Configures SIFT
*
* @param scaleSpace Scale-space that features are computed inside of
* @param edgeR Edge threshold. See {@link SiftDetector#SiftDetector(SiftScaleSpace, double, NonMaxLimiter)}
* @param extractor Finds minimums and maximums. See {@link SiftDetector#SiftDetector(SiftScaleSpace, double, NonMaxLimiter)}
* @param orientation Estimates feature orientation(s)
* @param describe Describes a SIFT feature
*/
public CompleteSift(SiftScaleSpace scaleSpace, double edgeR, NonMaxLimiter extractor,
OrientationHistogramSift orientation,
DescribePointSift describe) {
super(scaleSpace, edgeR, extractor);
this.orientation = orientation;
this.describe = describe;
final int dof = describe.getDescriptorLength();
features = new FastQueue<>(()->new BrightFeature(dof));
}
@Override
public void process(GrayF32 input) {
features.reset();
locations.reset();
orientations.reset();
super.process(input);
}
@Override
protected void detectFeatures(int scaleIndex) {
// compute image derivative for this scale
GrayF32 input = scaleSpace.getImageScale(scaleIndex);
derivX.reshape(input.width,input.height);
derivY.reshape(input.width,input.height);
gradient.process(input,derivX,derivY);
// set up the orientation and description algorithms
orientation.setImageGradient(derivX,derivY);
describe.setImageGradient(derivX,derivY);
super.detectFeatures(scaleIndex);
}
@Override
protected void handleDetection(ScalePoint p) {
// adjust the image for the down sampling in each octave
double localX = p.x / pixelScaleToInput;
double localY = p.y / pixelScaleToInput;
double localSigma = p.scale / pixelScaleToInput;
// find potential orientations first
orientation.process(localX,localY,localSigma);
// describe each feature
GrowQueue_F64 angles = orientation.getOrientations();
for (int i = 0; i < angles.size; i++) {
BrightFeature feature = features.grow();
feature.white = p.white;
describe.process(localX,localY,localSigma,angles.get(i),feature);
orientations.add(angles.get(i));
locations.add(p);
}
}
public FastAccess getLocations() {
return locations;
}
public FastAccess getDescriptions() {
return features;
}
public GrowQueue_F64 getOrientations() {
return orientations;
}
public int getDescriptorLength() {
return describe.getDescriptorLength();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy