boofcv.alg.feature.detdesc.DetectDescribeSurfPlanar Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.detdesc;
import boofcv.abst.feature.orientation.OrientationIntegral;
import boofcv.alg.feature.describe.DescribePointSurfPlanar;
import boofcv.alg.feature.detect.interest.FastHessianFeatureDetector;
import boofcv.struct.feature.BrightFeature;
import boofcv.struct.feature.ScalePoint;
import boofcv.struct.feature.SurfFeatureQueue;
import boofcv.struct.image.ImageGray;
import boofcv.struct.image.Planar;
import georegression.struct.point.Point2D_F64;
import org.ddogleg.struct.GrowQueue_F64;
import java.util.List;
/**
* Computes a color SURF descriptor from a {@link Planar} image. Features are detected,
* orientation estimated, and laplacian sign computed using a gray scale image. The gray scale image is found by
* computing the average across all bands for each pixel. A descriptor is computed inside band individually
* and stored in a descriptor which is N*length long. N = number of bands and length = number of
* elements in normal descriptor.
*
* @see boofcv.alg.feature.describe.DescribePointSurfPlanar
*
* @param Type of integral image
*
* @author Peter Abeles
*/
public class DetectDescribeSurfPlanar>
{
// SURF algorithms
protected FastHessianFeatureDetector detector;
protected OrientationIntegral orientation;
protected DescribePointSurfPlanar describe;
// storage for computed features
protected SurfFeatureQueue descriptions;
// detected scale points
protected List foundPoints;
// orientation of features
protected GrowQueue_F64 featureAngles = new GrowQueue_F64(10);
public DetectDescribeSurfPlanar(FastHessianFeatureDetector detector,
OrientationIntegral orientation,
DescribePointSurfPlanar describe )
{
this.detector = detector;
this.orientation = orientation;
this.describe = describe;
descriptions = new SurfFeatureQueue(describe.getDescriptorLength());
}
public BrightFeature createDescription() {
return describe.createDescription();
}
public BrightFeature getDescription(int index) {
return descriptions.get(index);
}
/**
* Detects and describes features inside provide images. All images are integral images.
*
* @param grayII Gray-scale integral image
* @param colorII Color integral image
*/
public void detect( II grayII , Planar colorII ) {
descriptions.reset();
featureAngles.reset();
// detect features
detector.detect(grayII);
// describe the found interest points
foundPoints = detector.getFoundPoints();
descriptions.resize(foundPoints.size());
featureAngles.resize(foundPoints.size());
describe(grayII, colorII);
}
protected void describe(II grayII, Planar colorII) {
orientation.setImage(grayII);
describe.setImage(grayII,colorII);
for( int i = 0; i < foundPoints.size(); i++ ) {
ScalePoint p = foundPoints.get(i);
orientation.setObjectRadius(p.scale);
double angle = orientation.compute(p.x,p.y);
describe.describe(p.x, p.y, angle, p.scale, descriptions.get(i));
featureAngles.set(i,angle);
}
}
public DescribePointSurfPlanar getDescribe() {
return describe;
}
public int getNumberOfFeatures() {
return foundPoints.size();
}
public Point2D_F64 getLocation(int featureIndex) {
return foundPoints.get(featureIndex);
}
public double getRadius(int featureIndex) {
return foundPoints.get(featureIndex).scale;
}
public double getOrientation(int featureIndex) {
return featureAngles.get(featureIndex);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy