All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.detect.extract.NonMaxBlockSearchStrict Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2020, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.detect.extract;

import boofcv.struct.QueueCorner;
import boofcv.struct.image.GrayF32;

/**
 * 

* Implementation of {@link NonMaxBlock} which implements a strict maximum rule. *

* * @author Peter Abeles */ public abstract class NonMaxBlockSearchStrict implements NonMaxBlock.Search { // threshold for intensity values when detecting minimums and maximums float thresholdMin; float thresholdMax; int radius; private QueueCorner localMin,localMax; GrayF32 img; @Override public void initialize( NonMaxBlock.Configuration configuration, GrayF32 image, QueueCorner localMin, QueueCorner localMax) { this.thresholdMin = configuration.thresholdMin; this.thresholdMax = configuration.thresholdMax; this.radius = configuration.radius; this.img = image; this.localMin = localMin; this.localMax = localMax; } public static class Max extends NonMaxBlockSearchStrict { @Override public void searchBlock(int x0, int y0, int x1, int y1 ) { int peakX = 0; int peakY = 0; float peakVal = -Float.MAX_VALUE; for (int y = y0; y < y1; y++) { int index = img.startIndex + y * img.stride + x0; for (int x = x0; x < x1; x++) { float v = img.data[index++]; if (v > peakVal) { peakVal = v; peakX = x; peakY = y; } } } if (peakVal >= thresholdMax && peakVal != Float.MAX_VALUE) { checkLocalMax(peakX, peakY, peakVal, img); } } @Override public boolean isDetectMinimums() { return false; } @Override public boolean isDetectMaximums() { return true; } @Override public NonMaxBlock.Search newInstance() { return new Max(); } } public static class Min extends NonMaxBlockSearchStrict { @Override public void searchBlock(int x0, int y0, int x1, int y1 ) { int peakX = 0; int peakY = 0; float peakVal = Float.MAX_VALUE; for (int y = y0; y < y1; y++) { int index = img.startIndex + y * img.stride + x0; for (int x = x0; x < x1; x++) { float v = img.data[index++]; if (v < peakVal) { peakVal = v; peakX = x; peakY = y; } } } if (peakVal <= thresholdMin && peakVal != -Float.MAX_VALUE) { checkLocalMin(peakX, peakY, peakVal, img); } } @Override public boolean isDetectMinimums() { return true; } @Override public boolean isDetectMaximums() { return false; } @Override public NonMaxBlock.Search newInstance() { return new Min(); } } public static class MinMax extends NonMaxBlockSearchStrict { @Override public void searchBlock(int x0, int y0, int x1, int y1 ) { int maxX = 0; int maxY = 0; int minX = 0; int minY = 0; float maxVal = -Float.MAX_VALUE; float minVal = Float.MAX_VALUE; for (int y = y0; y < y1; y++) { int index = img.startIndex + y * img.stride + x0; for (int x = x0; x < x1; x++) { float v = img.data[index++]; if (v > maxVal) { maxVal = v; maxX = x; maxY = y; } if (v < minVal) { minVal = v; minX = x; minY = y; } } } if (maxVal >= thresholdMax && maxVal != Float.MAX_VALUE) { checkLocalMax(maxX, maxY, maxVal, img); } if (minVal <= thresholdMin && minVal != -Float.MAX_VALUE) { checkLocalMin(minX, minY, minVal, img); } } @Override public boolean isDetectMinimums() { return true; } @Override public boolean isDetectMaximums() { return true; } @Override public NonMaxBlock.Search newInstance() { return new MinMax(); } } protected void checkLocalMax(int x_c, int y_c, float peakVal, GrayF32 img) { int x0 = x_c - radius; int x1 = x_c + radius; int y0 = y_c - radius; int y1 = y_c + radius; if (x0 < 0) x0 = 0; if (y0 < 0) y0 = 0; if (x1 >= img.width) x1 = img.width - 1; if (y1 >= img.height) y1 = img.height - 1; for (int y = y0; y <= y1; y++) { int index = img.startIndex + y * img.stride + x0; for (int x = x0; x <= x1; x++) { float v = img.data[index++]; if (v >= peakVal && !(x == x_c && y == y_c)) { // not a local max return; } } } // save location of local max localMax.append(x_c, y_c); } protected void checkLocalMin(int x_c, int y_c, float peakVal, GrayF32 img) { int x0 = x_c - radius; int x1 = x_c + radius; int y0 = y_c - radius; int y1 = y_c + radius; if (x0 < 0) x0 = 0; if (y0 < 0) y0 = 0; if (x1 >= img.width) x1 = img.width - 1; if (y1 >= img.height) y1 = img.height - 1; for (int y = y0; y <= y1; y++) { int index = img.startIndex + y * img.stride + x0; for (int x = x0; x <= x1; x++) { float v = img.data[index++]; if (v <= peakVal && !(x == x_c && y == y_c)) { // not a local min return; } } } // save location of local min localMin.append(x_c, y_c); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy