boofcv.alg.feature.detect.extract.NonMaxCandidate Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-feature Show documentation
Show all versions of boofcv-feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2020, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.detect.extract;
import boofcv.struct.image.GrayF32;
import georegression.struct.point.Point2D_I16;
import org.ddogleg.struct.FastAccess;
import org.ddogleg.struct.FastQueue;
import javax.annotation.Nullable;
/**
*
* Performs a sparse search for local minimums/maximums by only examine around candidates.
*
*
* @author Peter Abeles
*/
public class NonMaxCandidate {
// size of the search area
protected int radius;
// threshold for intensity values when detecting minimums and maximums
protected float thresholdMin;
protected float thresholdMax;
// does not process pixels this close to the image border
protected int ignoreBorder;
protected GrayF32 input;
// local search algorithm
protected Search search;
// upper bound on detectable extremes in the image
protected int endBorderX, endBorderY;
public NonMaxCandidate( Search search ) {
this.search = search;
}
/**
* Checks to see if the specified candidates are local minimums or maximums. If a candidate list is
* null then that test is skipped.
*/
public void process(GrayF32 intensityImage,
@Nullable FastAccess candidatesMin,
@Nullable FastAccess candidatesMax,
FastQueue foundMin , FastQueue foundMax ) {
this.input = intensityImage;
// pixels indexes larger than these should not be examined
endBorderX = intensityImage.width-ignoreBorder;
endBorderY = intensityImage.height-ignoreBorder;
search.initialize(intensityImage);
if( candidatesMin != null ) {
foundMin.reset();
examineMinimum(intensityImage, candidatesMin, foundMin);
}
if( candidatesMax != null ) {
foundMax.reset();
examineMaximum(intensityImage, candidatesMax, foundMax);
}
}
protected void examineMinimum(GrayF32 intensityImage , FastAccess candidates , FastQueue found ) {
final int stride = intensityImage.stride;
final float inten[] = intensityImage.data;
for (int iter = 0; iter < candidates.size; iter++) {
Point2D_I16 pt = candidates.data[iter];
if( pt.x < ignoreBorder || pt.y < ignoreBorder || pt.x >= endBorderX || pt.y >= endBorderY)
continue;
int center = intensityImage.startIndex + pt.y * stride + pt.x;
float val = inten[center];
if (val > thresholdMin || val == -Float.MAX_VALUE ) continue;
int x0 = Math.max(0,pt.x - radius);
int y0 = Math.max(0,pt.y - radius);
int x1 = Math.min(intensityImage.width, pt.x + radius + 1);
int y1 = Math.min(intensityImage.height, pt.y + radius + 1);
if( search.searchMin(x0,y0,x1,y1,center,val) )
found.grow().set(pt.x,pt.y);
}
}
protected void examineMaximum(GrayF32 intensityImage , FastAccess candidates , FastQueue found ) {
final int stride = intensityImage.stride;
final float inten[] = intensityImage.data;
for (int iter = 0; iter < candidates.size; iter++) {
Point2D_I16 pt = candidates.data[iter];
if( pt.x < ignoreBorder || pt.y < ignoreBorder || pt.x >= endBorderX || pt.y >= endBorderY)
continue;
int center = intensityImage.startIndex + pt.y * stride + pt.x;
float val = inten[center];
if (val < thresholdMax || val == Float.MAX_VALUE ) continue;
int x0 = Math.max(0,pt.x - radius);
int y0 = Math.max(0,pt.y - radius);
int x1 = Math.min(intensityImage.width, pt.x + radius + 1);
int y1 = Math.min(intensityImage.height, pt.y + radius + 1);
if( search.searchMax(x0,y0,x1,y1,center,val) )
found.grow().set(pt.x,pt.y);
}
}
public void setSearchRadius(int radius) {
this.radius = radius;
}
public int getSearchRadius() {
return radius;
}
public float getThresholdMin() {
return thresholdMin;
}
public void setThresholdMin(float thresholdMin) {
this.thresholdMin = thresholdMin;
}
public float getThresholdMax() {
return thresholdMax;
}
public void setThresholdMax(float thresholdMax) {
this.thresholdMax = thresholdMax;
}
public void setBorder( int border ) {
this.ignoreBorder = border;
}
public int getBorder() {
return ignoreBorder;
}
/**
* Interface for local search algorithm around the candidates
*/
public interface Search {
void initialize( GrayF32 intensity );
/**
* Verifies that the candidate is a local minimum
*
* @param x0 lower extent X. Inclusive
* @param y0 lower extent Y. Inclusive
* @param x1 upper extent X. Exclusive
* @param y1 upper extent Y. Exclusive
* @param centerIdx index of candidate pixel in the image
* @param val value at the candidate pixel
* @return true if it's a local min
*/
boolean searchMin( int x0 , int y0 , int x1 , int y1, int centerIdx , float val );
boolean searchMax( int x0 , int y0 , int x1 , int y1, int centerIdx , float val );
/**
* Create a new instance of this search algorithm. Useful for concurrent implementations
*/
Search newInstance();
}
/**
* Search with a relaxes rule. ≤
*/
public static class Relaxed implements NonMaxCandidate.Search {
GrayF32 intensity;
@Override
public void initialize(GrayF32 intensity) {
this.intensity = intensity;
}
@Override
public boolean searchMin(int x0, int y0, int x1, int y1, int centerIdx, float val) {
for( int i = y0; i < y1; i++ ) {
int index = intensity.startIndex + i * intensity.stride + x0;
for( int j = x0; j < x1; j++ , index++ ) {
if (val > intensity.data[index]) {
return false;
}
}
}
return true;
}
@Override
public boolean searchMax(int x0, int y0, int x1, int y1, int centerIdx, float val) {
for( int i = y0; i < y1; i++ ) {
int index = intensity.startIndex + i * intensity.stride + x0;
for( int j = x0; j < x1; j++ , index++ ) {
if (val < intensity.data[index]) {
return false;
}
}
}
return true;
}
@Override
public Search newInstance() {
return new Relaxed();
}
}
/**
* Search with a strict rule <
*/
public static class Strict implements NonMaxCandidate.Search {
GrayF32 intensity;
@Override
public void initialize(GrayF32 intensity) {
this.intensity = intensity;
}
@Override
public boolean searchMin(int x0, int y0, int x1, int y1, int centerIdx, float val) {
for( int i = y0; i < y1; i++ ) {
int index = intensity.startIndex + i * intensity.stride + x0;
for( int j = x0; j < x1; j++ , index++ ) {
// don't compare the center point against itself
if ( centerIdx == index )
continue;
if (val >= intensity.data[index]) {
return false;
}
}
}
return true;
}
@Override
public boolean searchMax(int x0, int y0, int x1, int y1, int centerIdx, float val) {
for( int i = y0; i < y1; i++ ) {
int index = intensity.startIndex + i * intensity.stride + x0;
for( int j = x0; j < x1; j++ , index++ ) {
// don't compare the center point against itself
if ( centerIdx == index )
continue;
if (val <= intensity.data[index]) {
return false;
}
}
}
return true;
}
@Override
public Search newInstance() {
return new Strict();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy