boofcv.alg.feature.detect.selector.FeatureSelectUniformBest Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-feature Show documentation
Show all versions of boofcv-feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2020, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.detect.selector;
import boofcv.misc.BoofMiscOps;
import boofcv.struct.ConfigGridUniform;
import boofcv.struct.ImageGrid;
import boofcv.struct.image.GrayF32;
import georegression.struct.point.Point2D_I16;
import org.ddogleg.sorting.QuickSort_F32;
import org.ddogleg.struct.FastAccess;
import org.ddogleg.struct.FastQueue;
import org.ddogleg.struct.GrowQueue_F32;
import org.ddogleg.struct.GrowQueue_I32;
import javax.annotation.Nullable;
import java.util.ArrayList;
import java.util.List;
/**
* Attempts to select features uniformly across the image with a preference for locally more intense features. This
* is done by breaking the image up into a grid. Then features are added by selecting the most intense feature from
* each grid. If a cell has a prior feature in it then it is skipped for that iteration and the prior counter is
* decremented. This is repeated until the limit has been reached or there are no more features to add.
*
* @author Peter Abeles
*/
public class FeatureSelectUniformBest implements FeatureSelectLimit {
/** Configuration for uniformly selecting a grid */
public ConfigGridUniform configUniform = new ConfigGridUniform();
// Grid for storing a set of objects
ImageGrid grid = new ImageGrid<>(Info::new,Info::reset);
// Workspace variables for sorting the cells
GrowQueue_F32 pointIntensity = new GrowQueue_F32();
QuickSort_F32 sorter = new QuickSort_F32();
GrowQueue_I32 indexes = new GrowQueue_I32();
List workList = new ArrayList<>();
@Override
public void select(GrayF32 intensity, boolean positive,
@Nullable FastAccess prior, FastAccess detected, int limit,
FastQueue selected)
{
selected.reset();
// the limit is more than the total number of features. Return them all!
if( (prior == null || prior.size==0) && detected.size <= limit ) {
BoofMiscOps.copyAll_2D_I16(detected,selected);
return;
}
// Adjust the grid to the requested limit and image shape
int targetCellSize = configUniform.selectTargetCellSize(limit,intensity.width,intensity.height);
grid.initialize(targetCellSize,intensity.width,intensity.height);
// Note all the prior features
if( prior != null ) {
for (int i = 0; i < prior.size; i++) {
Point2D_I16 p = prior.data[i];
grid.getCellAtPixel(p.x, p.y).priorCount++;
}
}
// Add all detected points to the grid
for (int i = 0; i < detected.size; i++) {
Point2D_I16 p = detected.data[i];
grid.getCellAtPixel(p.x,p.y).detected.add(p);
}
// Sort elements in each cell in order be inverse preference
sortCellLists(intensity, positive);
// Add points until the limit has been reached or there are no more cells to add
final FastAccess cells = grid.cells;
while( selected.size < limit ) {
boolean change = false;
for (int cellidx = 0; cellidx < cells.size && selected.size < limit; cellidx++) {
Info info = cells.get(cellidx);
// if there's a prior feature here, note it and move on
if( info.priorCount > 0 ) {
info.priorCount--;
change = true;
continue;
}
// Are there any detected features remaining?
if (info.detected.isEmpty())
continue;
selected.grow().set( info.detected.remove( info.detected.size()-1) );
change = true;
}
if( !change )
break;
}
}
/**
* Sort points in cells based on their intensity
*/
private void sortCellLists(GrayF32 intensity, boolean positive) {
// Add points to the grid elements and sort them based feature intensity
final FastAccess cells = grid.cells;
for (int cellidx = 0; cellidx < cells.size; cellidx++) {
final List cellPoints = cells.get(cellidx).detected;
if( cellPoints.isEmpty() )
continue;
final int N = cellPoints.size();
pointIntensity.resize(N);
indexes.resize(N);
// select the score's sign so that the most desirable is at the end of the list
// That way elements can be removed from the top of the list, which is less expensive.
if( positive ) {
for (int pointIdx = 0; pointIdx < N; pointIdx++) {
Point2D_I16 p = cellPoints.get(pointIdx);
pointIntensity.data[pointIdx] = intensity.unsafe_get(p.x, p.y);
}
} else {
for (int pointIdx = 0; pointIdx < N; pointIdx++) {
Point2D_I16 p = cellPoints.get(pointIdx);
pointIntensity.data[pointIdx] = -intensity.unsafe_get(p.x, p.y);
}
}
sorter.sort(pointIntensity.data,0,N,indexes.data);
// Extract an ordered list of points based on intensity and swap out the cell list to avoid a copy
workList.clear();
for (int i = 0; i < N; i++) {
workList.add( cellPoints.get(indexes.data[i]));
}
List tmp = cells.data[cellidx].detected;
cells.data[cellidx].detected = workList;
workList = tmp;
}
}
/**
* Info for each cell
*/
public static class Info
{
// Number of features in the cell from the prior list
int priorCount = 0;
// Sorted list of detected features by intensity
List detected = new ArrayList<>();
public void reset() {
priorCount = 0;
detected.clear();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy