All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.disparity.block.select.SelectErrorSubpixel Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.disparity.block.select;

import boofcv.alg.feature.disparity.block.DisparitySelect;
import boofcv.struct.image.GrayF32;

/**
 * 

* Implementation of {@link SelectErrorWithChecks_S32} that adds sub-pixel accuracy. Using * equation (3) from [1]:
* * d_sub = d + (C0 - C2)/(2*(C0 - 2*C1 + C2)
* * where C0,C1,C2 is the cost value, before, at, and after the selected disparity. *

* *

* [1] Wannes van der Mark and Dariu M. Gavrila, "Real-Time Dense Stereo for Intelligent Vehicles" * IEEE Trans. Intelligent Transportation Systems, Vol 7., No 1. March 2006. *

* * @author Peter Abeles */ public class SelectErrorSubpixel { /** * For scores of type int[] */ public static class S32_F32 extends SelectErrorWithChecks_S32 { public S32_F32(int maxError, int rightToLeftTolerance, double texture) { super(maxError, rightToLeftTolerance, texture, GrayF32.class); } S32_F32( S32_F32 original ) { super(original); } @Override protected void setDisparity(int index, int disparityValue) { if( disparityValue <= 0 || disparityValue >= localRange -1) { imageDisparity.data[index] = disparityValue; } else { int c0 = columnScore[disparityValue-1]; int c1 = columnScore[disparityValue]; int c2 = columnScore[disparityValue+1]; float offset = (float)(c0-c2)/(float)(2*(c0-2*c1+c2)); imageDisparity.data[index] = disparityValue + offset; } } @Override protected void setDisparityInvalid(int index) { imageDisparity.data[index] = (byte)invalidDisparity; } @Override public DisparitySelect concurrentCopy() { return new S32_F32(this); } } /** * For scores of type float[] */ public static class F32_F32 extends SelectErrorWithChecks_F32 { public F32_F32(int maxError, int rightToLeftTolerance, double texture) { super(maxError, rightToLeftTolerance, texture, GrayF32.class); } F32_F32( F32_F32 original ) { super(original); } @Override protected void setDisparity(int index, int disparityValue) { if( disparityValue <= 0 || disparityValue >= localRange -1) { imageDisparity.data[index] = disparityValue; } else { float c0 = columnScore[disparityValue-1]; float c1 = columnScore[disparityValue]; float c2 = columnScore[disparityValue+1]; float offset = (c0-c2)/(2f*(c0-2f*c1+c2)); imageDisparity.data[index] = disparityValue + offset; } } @Override protected void setDisparityInvalid(int index) { imageDisparity.data[index] = (byte)invalidDisparity; } @Override public DisparitySelect concurrentCopy() { return new F32_F32(this); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy