boofcv.alg.feature.disparity.sgm.cost.SgmCostBase Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.feature.disparity.sgm.cost;
import boofcv.alg.InputSanityCheck;
import boofcv.alg.feature.disparity.sgm.SgmDisparityCost;
import boofcv.struct.image.GrayU16;
import boofcv.struct.image.ImageBase;
import boofcv.struct.image.Planar;
/**
* Base class for computing SGM cost using single pixel error metrics. It handles iterating through all possible
* disparity values for all pixels in the image and any other book keeping. Only the score needs to be implemented.
*
* @author Peter Abeles
*/
public abstract class SgmCostBase> implements SgmDisparityCost {
protected T left, right;
protected GrayU16 costXD;
protected int disparityMin;
protected int disparityRange;
@Override
public void configure(int disparityMin, int disparityRange) {
this.disparityMin = disparityMin;
this.disparityRange = disparityRange;
}
@Override
public void process(T left, T right, Planar costYXD) {
InputSanityCheck.checkSameShape(left,right);
if( disparityRange == 0)
throw new IllegalArgumentException("disparityRange is 0. Did you call configure()?");
this.left = left;
this.right = right;
// Declare the "tensor" with shape (lengthY,lengthX,lengthD)
costYXD.reshape(disparityRange,left.width,left.height);
for (int y = 0; y < left.height; y++) {
costXD = costYXD.getBand(y);
int idxLeft = left.startIndex + y*left.stride + disparityMin;
for (int x = disparityMin; x < left.width; x++, idxLeft++) {
int idxOut = costXD.startIndex + (x-disparityMin)*costYXD.stride;
// The local limits on ranges that can be examined
int localRange = Math.min(disparityRange,x-disparityMin+1);
// start reading the right image at the smallest disparity then increase disparity size
int idxRight = right.startIndex + y*right.stride + x - disparityMin;
computeDisparityErrors(idxLeft,idxRight,idxOut,localRange);
// Fill in the disparity values outside the image with max cost
for (int d = localRange; d < disparityRange; d++) {
costXD.data[idxOut+d] = SgmDisparityCost.MAX_COST;
}
}
}
}
protected abstract void computeDisparityErrors( int idxLeft , int idxRight , int idxOut, int localRange );
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy