All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.orientation.OrientationSlidingWindow Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.orientation;

import boofcv.abst.feature.orientation.OrientationGradient;
import boofcv.alg.InputSanityCheck;
import boofcv.factory.filter.kernel.FactoryKernelGaussian;
import boofcv.misc.BoofMiscOps;
import boofcv.struct.ImageRectangle;
import boofcv.struct.convolve.Kernel2D_F32;
import boofcv.struct.image.ImageGray;


/**
 * 

* Estimates the orientation by sliding window across all angles. All pixels which are pointing * at an angle inside of this window have their gradient summed. The window with the largest normal * is selected as the best window. The angle is then computed from the best window using atan2() * and the summed gradient. *

* *

* NOTE: There are probably additional performance enhancements that could be done. *

* * @author Peter Abeles */ public abstract class OrientationSlidingWindow> implements OrientationGradient { // The actual radius being sampled in pixels protected int pixelRadius; // The requested object radius protected double objRadius; // used to adjust the size of the sample region protected double objectRadiusToScale; // image x and y derivatives protected D derivX; protected D derivY; // local variable used to define the region being examined. // this makes it easy to avoid going outside the image protected ImageRectangle rect = new ImageRectangle(); // number of different angles it will consider protected int numAngles; // the size of the window it will consider protected double windowSize; // the angle each pixel is pointing protected double angles[]; // if it uses weights or not protected boolean isWeighted; // optional weights protected Kernel2D_F32 weights; /** * Configures orientation estimating algorithm. * * @param objectRadiusToScale Convert object radius into scale factor * @param numAngles Number of discrete points in which the sliding window will be centered around. * @param windowSize Number of radians in the window being considered. * @param isWeighted Should points be weighted using a Gaussian kernel. */ public OrientationSlidingWindow( double objectRadiusToScale, int numAngles , double windowSize , boolean isWeighted ) { this.objectRadiusToScale = objectRadiusToScale; this.numAngles = numAngles; this.windowSize = windowSize; this.isWeighted = isWeighted; } public Kernel2D_F32 getWeights() { return weights; } @Override public void setObjectRadius(double objRadius) { this.objRadius = objRadius; pixelRadius = (int)Math.ceil(objRadius*objectRadiusToScale); if( isWeighted ) { weights = FactoryKernelGaussian.gaussian(2,true, 32, -1, pixelRadius); } int w = pixelRadius*2+1; angles = new double[ w*w ]; } @Override public void setImage( D derivX, D derivY) { InputSanityCheck.checkSameShape(derivX,derivY); this.derivX = derivX; this.derivY = derivY; } @Override public double compute(double X, double Y) { int c_x = (int)X; int c_y = (int)Y; // compute the visible region while taking in account // the image borders rect.x0 = c_x- pixelRadius; rect.y0 = c_y- pixelRadius; rect.x1 = c_x+ pixelRadius +1; rect.y1 = c_y+ pixelRadius +1; BoofMiscOps.boundRectangleInside(derivX,rect); if( isWeighted ) return computeWeightedOrientation(c_x,c_y); else return computeOrientation(); } /** * Compute the angle without using the optional weights */ protected abstract double computeOrientation(); /** * Compute the angle using the weighting kernel. */ protected abstract double computeWeightedOrientation(int c_x , int c_y ); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy