All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.segmentation.slic.SegmentSlic Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2020, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.segmentation.slic;

import boofcv.alg.segmentation.ComputeRegionMeanColor;
import boofcv.alg.segmentation.ms.ClusterLabeledImage;
import boofcv.alg.segmentation.ms.MergeSmallRegions;
import boofcv.factory.segmentation.FactorySegmentationAlg;
import boofcv.struct.ConnectRule;
import boofcv.struct.feature.ColorQueue_F32;
import boofcv.struct.image.GrayS32;
import boofcv.struct.image.ImageBase;
import boofcv.struct.image.ImageType;
import org.ddogleg.struct.FastQueue;
import org.ddogleg.struct.GrowQueue_I32;
import org.ddogleg.struct.Stoppable;

import java.util.Arrays;

/**
 * 

* K-means based superpixel image segmentation, see [1]. The image is broken up into superpixels (clusters of * connected pixels) in a grid like pattern. A connectivity rule of 4 or 8 is enforced across all the clusters. * Clustering is done using k-means, where each point is composed on the 2D image coordinate and an intensity * value in each color band, thus K = 2+numBands. Instead of computing the distance of each cluster's center * from each point only points within a distance of S si considered. The difference in scale difference between * pixels and image intensity is handled through a user configurable tuning parameter. *

* *

* Deviations from paper: *

    *
  • In the paper a LAB color space is always used. In this implementation a general purpose N-dimensional * color space is used.
  • *
  • To correctly support LAB or other color spaces a specialized implementation might be needed to ensure * the intensity of a pixel is computed correctly.
  • *
  • Small regions are merged into other regions based on how similar their color is. In the paper * a small region is merged into the largest region it is connected to.
  • *
*

* *

* [1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk, * SLIC Superpixels, EPFL Technical Report no. 149300, June 2010. *

* * @author Peter Abeles */ public abstract class SegmentSlic> implements Stoppable { // border which ensures there is a 3x3 neighborhood around the initial clusters and that there are pixels // which can be sampled when computing the gradient public static final int BORDER = 2; // number of bands in the input image private int numBands; // the number of regions/superpixels. K in the paper private int numberOfRegions; // spacial weighting tuning parameter Is also m in the paper. private float m; // Number of iterations private int totalIterations; // Space between superpixel centers. S in the paper protected int gridInterval; // Adjustment to spacial distance. Computed from m and gridInterval private float adjustSpacial; // The image being processed protected T input; // Initial segmentation before connectivity is enforced private GrayS32 initialSegments = new GrayS32(1,1); // number of members in each region private GrowQueue_I32 regionMemberCount = new GrowQueue_I32(); // color of each region private FastQueue regionColor; // merges smaller regions into larger ones private MergeSmallRegions mergeSmall; // ensures that all pixels in segment are connected protected ClusterLabeledImage segment; // storage for clusters and pixel information protected FastQueue clusters; protected FastQueue pixels = new FastQueue<>(Pixel::new); // type of input image protected ImageType imageType; // connectivity rule protected ConnectRule connectRule; private volatile boolean stopRequested=false; public SegmentSlic( int numberOfRegions , float m , int totalIterations , ConnectRule connectRule , ImageType imageType ) { this.numberOfRegions = numberOfRegions; this.m = m; this.totalIterations = totalIterations; this.numBands = imageType.getNumBands(); this.connectRule = connectRule; this.imageType = imageType; ComputeRegionMeanColor regionColor = FactorySegmentationAlg.regionMeanColor(imageType); this.mergeSmall = new MergeSmallRegions<>(-1, connectRule, regionColor); this.segment = new ClusterLabeledImage(connectRule); this.regionColor = new ColorQueue_F32(numBands); // custom declaration for pixel color clusters = new FastQueue<>(Cluster.class, () -> { Cluster c = new Cluster(); c.color = new float[ SegmentSlic.this.numBands ]; return c; }); } public void process( T input , GrayS32 output ) { output.reshape(input.width,input.height); stopRequested = false; if( input.width < 2*BORDER || input.height < 2*BORDER) throw new IllegalArgumentException( "Image is too small to process. Must have a width and height of at least "+(2*BORDER)); // initialize all the data structures initalize(input); // Seed the clusters initializeClusters(); // Perform the modified k-means iterations for( int i = 0; i < totalIterations && !stopRequested; i++ ) { computeClusterDistance(); updateClusters(); } if( stopRequested ) return; // Assign labels to each pixel based on how close it is to a cluster computeClusterDistance(); assignLabelsToPixels(initialSegments,regionMemberCount,regionColor); // Assign disconnected pixels to the largest cluster they touch int N = input.width*input.height/numberOfRegions; segment.process(initialSegments,output,regionMemberCount); mergeSmall.setMinimumSize(N / 2); mergeSmall.process(input,output,regionMemberCount,regionColor); } /** * prepares all data structures */ protected void initalize(T input) { this.input = input; pixels.resize(input.width * input.height); initialSegments.reshape(input.width, input.height); // number of usable pixels that cluster centers can be placed in int numberOfUsable = (input.width-2*BORDER)*(input.height-2*BORDER); gridInterval = (int)Math.sqrt( numberOfUsable/(double)numberOfRegions); if( gridInterval <= 0 ) throw new IllegalArgumentException("Too many regions for an image of this size"); // See equation (1) adjustSpacial = m/gridInterval; } /** * initialize all the clusters at regularly spaced intervals. Their locations are perturbed a bit to reduce * the likelihood of a bad location. Initial color is set to the image color at the location */ protected void initializeClusters() { int offsetX = Math.max(BORDER,((input.width-1) % gridInterval)/2); int offsetY = Math.max(BORDER,((input.height-1) % gridInterval)/2); int clusterId = 0; clusters.reset(); for( int y = offsetY; y < input.height-BORDER; y += gridInterval ) { for( int x = offsetX; x < input.width-BORDER; x += gridInterval ) { Cluster c = clusters.grow(); c.id = clusterId++; if( c.color == null) c.color = new float[numBands]; // sets the location and color at the local minimal gradient point perturbCenter( c , x , y ); } } } /** * Set the cluster's center to be the pixel in a 3x3 neighborhood with the smallest gradient */ protected void perturbCenter( Cluster c , int x , int y ) { float best = Float.MAX_VALUE; int bestX=0,bestY=0; for( int dy = -1; dy <= 1; dy++ ) { for( int dx = -1; dx <= 1; dx++ ) { float d = gradient(x + dx, y + dy); if( d < best ) { best = d; bestX = dx; bestY = dy; } } } c.x = x+bestX; c.y = y+bestY; setColor(c.color,x+bestX,y+bestY); } /** * Computes the gradient at the specified pixel */ protected float gradient(int x, int y) { float dx = getIntensity(x+1,y) - getIntensity(x-1,y); float dy = getIntensity(x,y+1) - getIntensity(x,y-1); return dx*dx + dy*dy; } /** * Sets the cluster's to the pixel color at that location */ public abstract void setColor( float[] color , int x , int y ); /** * Performs a weighted add to the cluster's color at the specified pixel in the image */ public abstract void addColor( float[] color , int index , float weight ); /** * Euclidean Squared distance away that the pixel is from the provided color */ public abstract float colorDistance( float[] color , int index ); /** * Intensity of the pixel at the specified location */ public abstract float getIntensity(int x, int y); /** * Computes how far away each cluster is from each pixel. Expectation step. */ protected void computeClusterDistance() { for( int i = 0; i < pixels.size; i++ ) { pixels.data[i].reset(); } for( int i = 0; i < clusters.size && !stopRequested; i++ ) { Cluster c = clusters.data[i]; // compute search bounds int centerX = (int)(c.x + 0.5f); int centerY = (int)(c.y + 0.5f); int x0 = centerX - gridInterval; int x1 = centerX + gridInterval + 1; int y0 = centerY - gridInterval; int y1 = centerY + gridInterval + 1; if( x0 < 0 ) x0 = 0; if( y0 < 0 ) y0 = 0; if( x1 > input.width ) x1 = input.width; if( y1 > input.height ) y1 = input.height; for( int y = y0; y < y1; y++ ) { int indexPixel = y*input.width + x0; int indexInput = input.startIndex + y*input.stride + x0; int dy = y-centerY; for( int x = x0; x < x1; x++ ) { int dx = x-centerX; float distanceColor = colorDistance(c.color,indexInput++); float distanceSpacial = dx*dx + dy*dy; pixels.data[indexPixel++].add(c,distanceColor + adjustSpacial*distanceSpacial); } } } } /** * Update the value of each cluster using Maximization step. */ protected void updateClusters() { for( int i = 0; i < clusters.size; i++ ) { clusters.data[i].reset(); } int indexPixel = 0; for( int y = 0; y < input.height&& !stopRequested; y++ ) { int indexInput = input.startIndex + y*input.stride; for( int x =0; x < input.width; x++ , indexPixel++ , indexInput++) { Pixel p = pixels.get(indexPixel); // convert the distance each cluster is from the pixel into weights p.computeWeights(); for( int i = 0; i < p.clusters.size; i++ ) { ClusterDistance d = p.clusters.data[i]; d.cluster.x += x*d.distance; d.cluster.y += y*d.distance; d.cluster.totalWeight += d.distance; addColor(d.cluster.color,indexInput,d.distance); } } } // recompute the center of each cluster for( int i = 0; i < clusters.size; i++ ) { clusters.data[i].update(); } } /** * Selects which region each pixel belongs to based on which cluster it is the closest to */ public void assignLabelsToPixels( GrayS32 pixelToRegions , GrowQueue_I32 regionMemberCount , FastQueue regionColor ) { regionColor.reset(); for( int i = 0; i < clusters.size(); i++ ) { float[] r = regionColor.grow(); float[] c = clusters.get(i).color; for( int j = 0; j < numBands; j++ ) { r[j] = c[j]; } } regionMemberCount.resize(clusters.size()); regionMemberCount.fill(0); int indexPixel = 0; for( int y = 0; y < pixelToRegions.height; y++ ) { int indexOutput = pixelToRegions.startIndex + y*pixelToRegions.stride; for( int x =0; x < pixelToRegions.width; x++ , indexPixel++ , indexOutput++) { Pixel p = pixels.data[indexPixel]; // It is possible for a pixel to be unassigned if all the means move too far away from it // Default to a non-existant cluster if that's the case int best = -1; float bestDistance = Float.MAX_VALUE; // find the region/cluster which it is closest to for( int j = 0; j < p.clusters.size; j++ ) { ClusterDistance d = p.clusters.data[j]; if( d.distance < bestDistance ) { bestDistance = d.distance; best = d.cluster.id; } } if( best == -1 ) { regionColor.grow(); best = regionMemberCount.size(); regionMemberCount.add(0); } pixelToRegions.data[indexOutput] = best; regionMemberCount.data[best]++; } } } public GrowQueue_I32 getRegionMemberCount() { return regionMemberCount; } public FastQueue getClusters() { return clusters; } /** * K-means clustering information for each pixel. Stores distance from each cluster mean. */ public static class Pixel { // list of clusters it is interacting with public FastQueue clusters = new FastQueue<>(12, ClusterDistance::new); public void add( Cluster c , float distance ) { // make sure it isn't already full. THis should almost never happen ClusterDistance d = clusters.grow(); d.cluster = c; d.distance = distance; } public void computeWeights() { if( clusters.size == 1 ) { clusters.data[0].distance = 1; } else { float sum = 0; for( int i = 0; i < clusters.size; i++ ) { sum += clusters.data[i].distance; } for( int i = 0; i < clusters.size; i++ ) { clusters.data[i].distance = 1.0f - clusters.data[i].distance/sum; } } } public void reset() { clusters.reset(); } } /** * Stores how far a cluster is from the specified pixel */ public static class ClusterDistance { // the cluster public Cluster cluster; // how far the pixel is from the cluster public float distance; } /** * The mean in k-means. Point in image (x,y) and color space. */ public static class Cluster { // unique ID for the cluster public int id; // location of the cluster in the image and color space public float x; public float y; public float color[]; // the total. Used when being updated public float totalWeight; public void reset() { x = y = 0; Arrays.fill(color,0); totalWeight = 0; } public void update() { x /= totalWeight; y /= totalWeight; for( int i = 0; i < color.length; i++ ) { color[i] /= totalWeight; } } } public ImageType getImageType() { return imageType; } public ConnectRule getConnectRule() { return connectRule; } @Override public void requestStop() { stopRequested = true; } @Override public boolean isStopRequested() { return stopRequested; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy