boofcv.alg.shapes.ellipse.SnapToEllipseEdge Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2020, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.shapes.ellipse;
import boofcv.alg.shapes.edge.BaseIntegralEdge;
import boofcv.struct.image.ImageGray;
import georegression.fitting.curves.FitEllipseWeightedAlgebraic_F64;
import georegression.geometry.UtilEllipse_F64;
import georegression.metric.UtilAngle;
import georegression.struct.curve.EllipseRotated_F64;
import georegression.struct.point.Point2D_F64;
import org.ddogleg.struct.FastQueue;
import org.ddogleg.struct.GrowQueue_F64;
/**
* Refines an initial estimate of an elipse using a subpixel contour technique. A local line integral around each
* point is used to determine how important each point is. The contour being
*
* @author Peter Abeles
*/
public class SnapToEllipseEdge> extends BaseIntegralEdge {
// maximum number of iterations it will performance
protected int maxIterations = 10;
// when the difference between two ellipses is less than this amount stop iterating
protected double convergenceTol = 1e-6;
// how many points along the contour it will sample
protected int numSampleContour;
// Determines the number of points sampled radially outwards from the line
// Total intensity values sampled at each point along the line is radius*2+2,
// and points added to line fitting is radius*2+1.
protected int radialSamples;
protected GrowQueue_F64 weights = new GrowQueue_F64();// storage for weights in line fitting
// storage for where the points that are sampled along the line
protected FastQueue samplePts = new FastQueue<>(Point2D_F64::new);
protected FitEllipseWeightedAlgebraic_F64 fitter = new FitEllipseWeightedAlgebraic_F64();
protected EllipseRotated_F64 previous = new EllipseRotated_F64();
/**
* Constructor with configuration
*
* @param numSampleContour Maximum number of iterations it will performance
* @param radialSamples When the difference between two ellipses is less than this amount stop iterating
* @param imageType Type of gray-scale input image
*/
public SnapToEllipseEdge( int numSampleContour, int radialSamples , Class imageType) {
super(imageType);
this.numSampleContour = numSampleContour;
this.radialSamples = radialSamples;
}
/**
* Refines provided list by snapping it to edges found in the image
*
* @param input (Output) Close approximation of the ellipse in the image
* @param refined (Output) Storage for refined estimate. Can be same instance as input
* @return True if a refined estimate could be found, false if it failed
*/
public boolean process(EllipseRotated_F64 input, EllipseRotated_F64 refined) {
refined.set(input);
previous.set(input);
for (int iteration = 0; iteration < maxIterations; iteration++) {
refined.set(previous);
computePointsAndWeights(refined);
if( fitter.process(samplePts.toList(),weights.data) ) {
// Get the results in local coordinates
UtilEllipse_F64.convert(fitter.getEllipse(),refined);
// convert back into image coordinates
double scale = previous.a;
refined.center.x = refined.center.x*scale + previous.center.x;
refined.center.y = refined.center.y*scale + previous.center.y;
refined.a *= scale;
refined.b *= scale;
} else {
return false;
}
// stop once the change between two iterations is insignificant
if( change(previous,refined) <= convergenceTol) {
return true;
} else {
previous.set(refined);
}
}
return true;
}
/**
* Computes a numerical value for the difference in parameters between the two ellipses
*/
protected static double change( EllipseRotated_F64 a , EllipseRotated_F64 b ) {
double total = 0;
total += Math.abs(a.center.x - b.center.x);
total += Math.abs(a.center.y - b.center.y);
total += Math.abs(a.a - b.a);
total += Math.abs(a.b - b.b);
// only care about the change of angle when it is not a circle
double weight = Math.min(4,2.0*(a.a/a.b-1.0));
total += weight*UtilAngle.distHalf(a.phi , b.phi);
return total;
}
/**
* Computes the location of points along the line and their weights
*/
void computePointsAndWeights(EllipseRotated_F64 ellipse) {
// use the semi-major axis to scale the input points for numerical stability
double localScale = ellipse.a;
samplePts.reset();
weights.reset();
int numSamples = radialSamples * 2 + 2;
int numPts = numSamples - 1;
Point2D_F64 sample = new Point2D_F64();
for (int i = 0; i < numSampleContour; i++) {
// find a point along the ellipse at evenly spaced angles
double theta = 2.0 * Math.PI * i / numSampleContour;
UtilEllipse_F64.computePoint(theta, ellipse, sample);
// compute the unit tangent along the ellipse at this point
double tanX = sample.x - ellipse.center.x;
double tanY = sample.y - ellipse.center.y;
double r = Math.sqrt(tanX * tanX + tanY * tanY);
tanX /= r;
tanY /= r;
// define the line it will sample along
double x = sample.x - numSamples * tanX / 2.0;
double y = sample.y - numSamples * tanY / 2.0;
double lengthX = numSamples * tanX;
double lengthY = numSamples * tanY;
// Unless all the sample points are inside the image, ignore this point
if (!integral.isInside(x, y) || !integral.isInside(x + lengthX, y + lengthY))
continue;
double sample0 = integral.compute(x, y, x + tanX, y + tanY);
x += tanX;
y += tanY;
for (int j = 0; j < numPts; j++) {
double sample1 = integral.compute(x, y, x + tanX, y + tanY);
double w = sample0 - sample1;
if (w < 0) w = -w;
if (w > 0) {
// convert into a local coordinate so make the linear fitting more numerically stable and
// independent on position in the image
samplePts.grow().set((x - ellipse.center.x) / localScale, (y - ellipse.center.y) / localScale);
weights.add(w);
}
x += tanX;
y += tanY;
sample0 = sample1;
}
}
}
public int getMaxIterations() {
return maxIterations;
}
public void setMaxIterations(int maxIterations) {
this.maxIterations = maxIterations;
}
public double getConvergenceTol() {
return convergenceTol;
}
public void setConvergenceTol(double convergenceTol) {
this.convergenceTol = convergenceTol;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy