All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.tracker.klt.KltTracker Maven / Gradle / Ivy

/*
 * Copyright (c) 2011-2020, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.tracker.klt;

import boofcv.alg.InputSanityCheck;
import boofcv.alg.interpolate.InterpolateRectangle;
import boofcv.alg.misc.ImageMiscOps;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.ImageGray;

/**
 * 

* A Kanade-Lucas-Tomasi (KLT) [1,2,3,4] point feature tracker for a single layer gray scale image. It tracks point features * across a sequence of images by having each feature individually follow the image's gradient. Feature locations * are estimated to within sub-pixel accuracy. *

* *

* For this particular implementation of KLT, image derivatives is only needed when setDescription() is called. * Tracker quality will degrade if features change orientation, but this technique is significantly faster. *

* *

* Citations:
*
* [1] Bruce D. Lucas and Takeo Kanade. An Iterative Image Registration Technique with an * Application to Stereo Vision. International Joint Conference on Artificial Intelligence, * pages 674-679, 1981.
* [2] Carlo Tomasi and Takeo Kanade. Detection and Tracking of Point Features. Carnegie * Mellon University Technical Report CMU-CS-91-132, April 1991.
* [3] Jianbo Shi and Carlo Tomasi. Good Features to Track. IEEE Conference on Computer * Vision and Pattern Recognition, pages 593-600, 1994.
* [4] Stan Birchfield, http://www.ces.clemson.edu/~stb/klt/ *

* * @author Peter Abeles */ @SuppressWarnings({"SuspiciousNameCombination"}) public class KltTracker, D extends ImageGray> { // input image protected I image; // image gradient protected D derivX, derivY; // Used to interpolate the image and gradient protected InterpolateRectangle interpInput; protected InterpolateRectangle interpDeriv; // tracker configuration protected ConfigKlt config; // feature description curvature information protected float Gxx, Gyy, Gxy; // residual times the gradient protected float Ex, Ey; // Tolerance for drift in pixels. Computed dynamically protected float maximumDrift; // width of the feature protected int widthFeature; // length of the feature description protected int lengthFeature; // the feature in the current image protected GrayF32 currDesc = new GrayF32(1,1); // storage for sub-region used when computing interpolation protected GrayF32 subimage = new GrayF32(); // destination image for current feature data in border case int dstX0,dstY0,dstX1,dstY1; // top-left corner of feature in input image for border case float srcX0 , srcY0; // allowed feature bounds float allowedLeft; float allowedRight; float allowedTop; float allowedBottom; // bounds for checking to see if it is out of the image float outsideLeft; float outsideRight; float outsideTop; float outsideBottom; // error between template and the current track position in the image float error; public KltTracker(InterpolateRectangle interpInput, InterpolateRectangle interpDeriv, ConfigKlt config) { this.interpInput = interpInput; this.interpDeriv = interpDeriv; this.config = config; } /** * Sets the current image it should be tracking with. * * @param image Original input image. * @param derivX Image derivative along the x-axis * @param derivY Image derivative along the y-axis */ public void setImage(I image, D derivX, D derivY) { InputSanityCheck.checkSameShape(image, derivX, derivY); this.image = image; this.interpInput.setImage(image); this.derivX = derivX; this.derivY = derivY; } /** * Same as {@link #setImage}, but it doesn't check to see if the images are the same size each time */ public void unsafe_setImage(I image, D derivX, D derivY) { this.image = image; this.interpInput.setImage(image); this.derivX = derivX; this.derivY = derivY; } /** * Sets the features description using the current image and the location of the feature stored in the feature. * If the feature is an illegal location and cannot be set then false is returned. * @param feature Feature description which is to be set. Location must be specified. * @return true if the feature's description was modified. */ @SuppressWarnings({"SuspiciousNameCombination"}) public boolean setDescription(KltFeature feature) { setAllowedBounds(feature); if (!isFullyInside(feature.x, feature.y)) { if( isFullyOutside(feature.x,feature.y)) return false; else return internalSetDescriptionBorder(feature); } return internalSetDescription(feature); } protected boolean internalSetDescription(KltFeature feature) { int regionWidth = feature.radius * 2 + 1; int size = regionWidth * regionWidth; float tl_x = feature.x - feature.radius; float tl_y = feature.y - feature.radius; interpInput.setImage(image); interpInput.region(tl_x, tl_y, feature.desc); interpDeriv.setImage(derivX); interpDeriv.region(tl_x, tl_y, feature.derivX); interpDeriv.setImage(derivY); interpDeriv.region(tl_x, tl_y, feature.derivY); float Gxx = 0, Gyy = 0, Gxy = 0; for (int i = 0; i < size; i++) { float dX = feature.derivX.data[i]; float dY = feature.derivY.data[i]; Gxx += dX * dX; Gyy += dY * dY; Gxy += dX * dY; } feature.Gxx = Gxx; feature.Gyy = Gyy; feature.Gxy = Gxy; float det = Gxx * Gyy - Gxy * Gxy; return (det >= config.minDeterminant*lengthFeature); } /** * Computes the descriptor for border features. All it needs to do * is save the pixel value, but derivative information is also computed * so that it can reject bad features immediately. */ protected boolean internalSetDescriptionBorder(KltFeature feature) { computeSubImageBounds(feature, feature.x, feature.y); ImageMiscOps.fill(feature.desc, Float.NaN); feature.desc.subimage(dstX0, dstY0, dstX1, dstY1, subimage); interpInput.setImage(image); interpInput.region(srcX0, srcY0, subimage); feature.derivX.subimage(dstX0, dstY0, dstX1, dstY1, subimage); interpDeriv.setImage(derivX); interpDeriv.region(srcX0, srcY0, subimage); feature.derivY.subimage(dstX0, dstY0, dstX1, dstY1, subimage); interpDeriv.setImage(derivY); interpDeriv.region(srcX0, srcY0, subimage); int total= 0; Gxx = Gyy = Gxy = 0; for( int i = 0; i < lengthFeature; i++ ) { if( Float.isNaN(feature.desc.data[i])) continue; total++; float dX = feature.derivX.data[i]; float dY = feature.derivY.data[i]; Gxx += dX * dX; Gyy += dY * dY; Gxy += dX * dY; } // technically don't need to save this... feature.Gxx = Gxx; feature.Gyy = Gyy; feature.Gxy = Gxy; float det = Gxx * Gyy - Gxy * Gxy; return (det >= config.minDeterminant*total); } /** *

* Updates the feature's location inside the image. The feature's position can be modified * even if tracking fails. *

* * @param feature Feature being tracked. * @return If the tracking was successful or not. */ public KltTrackFault track(KltFeature feature) { // precompute bounds and other values setAllowedBounds(feature); // sanity check to make sure it is actually inside the image if ( isFullyOutside(feature.x, feature.y)) return KltTrackFault.OUT_OF_BOUNDS; if (currDesc.data.length < lengthFeature) { currDesc.reshape(widthFeature,widthFeature); } // save the original location so that a drifting fault can be detected float origX = feature.x, origY = feature.y; // If the feature is complete then the fast code can be used when entirely inside boolean complete = isDescriptionComplete(feature); float det = 0; // make sure its inside this image if ( complete ) { // see if the determinant is too small Gxx = feature.Gxx; Gyy = feature.Gyy; Gxy = feature.Gxy; det = Gxx * Gyy - Gxy * Gxy; if (det < config.minDeterminant*lengthFeature) { return KltTrackFault.FAILED; } } for (int iter = 0; iter < config.maxIterations; iter++) { float dx,dy; if( complete && isFullyInside(feature.x, feature.y) ) { computeE(feature, feature.x, feature.y); } else { // once it goes outside it must remain outside. If it starts outside int length = computeGandE_border(feature, feature.x, feature.y); det = Gxx * Gyy - Gxy * Gxy; if (det <= config.minDeterminant*length) { return KltTrackFault.FAILED; } } // solve for D dx = (Gyy * Ex - Gxy * Ey) / det; dy = (Gxx * Ey - Gxy * Ex) / det; feature.x += dx; feature.y += dy; // see if it moved outside of the image if ( isFullyOutside(feature.x, feature.y)) return KltTrackFault.OUT_OF_BOUNDS; // see if it has moved more than possible if it is really tracking a target // this happens in regions with little texture if (Math.abs(feature.x - origX) > maximumDrift || Math.abs(feature.y - origY) > maximumDrift) return KltTrackFault.DRIFTED; // see if it has converged to a solution if (Math.abs(dx) < config.minPositionDelta && Math.abs(dy) < config.minPositionDelta) { break; } } if ( (error=computeError(feature)) > config.maxPerPixelError) return KltTrackFault.LARGE_ERROR; return KltTrackFault.SUCCESS; } /** * Precompute image bounds that the feature is allowed inside of */ protected void setAllowedBounds(KltFeature feature) { // compute the feature's width and temporary storage related to it widthFeature = feature.radius * 2 + 1; lengthFeature = widthFeature * widthFeature; maximumDrift = widthFeature*config.driftFracTol; allowedLeft = feature.radius; allowedTop = feature.radius; allowedRight = image.width - feature.radius-1; allowedBottom = image.height - feature.radius-1; outsideLeft = -feature.radius; outsideTop = -feature.radius; outsideRight = image.width + feature.radius-1; outsideBottom = image.height + feature.radius-1; } private float computeError(KltFeature feature) { float error = 0; int total = 0; for (int i = 0; i < lengthFeature; i++) { if( Float.isNaN(feature.desc.data[i]) || Float.isNaN(currDesc.data[i])) continue; // compute the difference between the previous and the current image error += Math.abs(feature.desc.data[i] - currDesc.data[i]); total++; } return error / total; } protected void computeE(KltFeature feature, float x, float y) { // extract the region in the current image interpInput.region(x - feature.radius, y - feature.radius, currDesc); Ex = 0; Ey = 0; for (int i = 0; i < lengthFeature; i++) { // compute the difference between the previous and the current image float d = feature.desc.data[i] - currDesc.data[i]; Ex += d * feature.derivX.data[i]; Ey += d * feature.derivY.data[i]; } } /** * When part of the region is outside the image G and E need to be recomputed */ protected int computeGandE_border(KltFeature feature, float cx, float cy) { computeSubImageBounds(feature, cx, cy); ImageMiscOps.fill(currDesc, Float.NaN); currDesc.subimage(dstX0, dstY0, dstX1, dstY1, subimage); interpInput.setImage(image); interpInput.region(srcX0, srcY0, subimage); int total = 0; Gxx = 0; Gyy = 0; Gxy = 0; Ex = 0; Ey = 0; for( int i = 0; i < lengthFeature; i++ ) { float template = feature.desc.data[i]; float current = currDesc.data[i]; // if the description was outside of the image here skip it if( Float.isNaN(template) || Float.isNaN(current)) continue; // count total number of points inbounds total++; float dX = feature.derivX.data[i]; float dY = feature.derivY.data[i]; // compute the difference between the previous and the current image float d = template - current; Ex += d * dX; Ey += d * dY; Gxx += dX * dX; Gyy += dY * dY; Gxy += dX * dY; } return total; } private void computeSubImageBounds(KltFeature feature, float cx, float cy) { // initially include the whole destination image dstX0 = 0; dstY0 = 0; dstX1 = widthFeature; dstY1 = widthFeature; // location of upper left corner of feature in input image srcX0 = cx - feature.radius; srcY0 = cy - feature.radius; float srxX1 = srcX0 + widthFeature; float srxY1 = srcY0 + widthFeature; // take in account the image border if( srcX0 < 0 ) { dstX0 = (int)-Math.floor(srcX0); srcX0 += dstX0; } if( srxX1 > image.width ) { dstX1 -= (int)Math.ceil(srxX1-image.width); // rounding error dstX1 -= (srcX0 + (dstX1-dstX0) > image.width ? 1 : 0); } if( srcY0 < 0 ) { dstY0 = (int)-Math.floor(srcY0); srcY0 += dstY0; } if( srxY1 > image.height ) { dstY1 -= (int)Math.ceil(srxY1-image.height); // rounding error dstY1 -= srcY0 + (dstY1-dstY0) > image.height ? 1 : 0; } if( srcX0 < 0 || srcY0 < 0 || srcX0 + (dstX1-dstX0) > image.width || srcY0 + (dstY1-dstY0) > image.height ) { throw new IllegalArgumentException("Region is outside of the image"); } } /** * Checks to see if the feature description is complete or if it was created by a feature partially * outside the image */ public boolean isDescriptionComplete( KltFeature feature ) { for( int i = 0; i < lengthFeature; i++ ) { if( Float.isNaN(feature.desc.data[i]) ) return false; } return true; } /** * Returns true if the features is entirely enclosed inside of the image. */ public boolean isFullyInside(float x, float y) { if (x < allowedLeft || x > allowedRight) return false; if (y < allowedTop || y > allowedBottom) return false; return true; } /** * Returns true if the features is entirely outside of the image. A region is entirely outside if not * an entire pixel is contained inside the image. So if only 0.999 of a pixel is inside then the whole * region is considered to be outside. Can't interpolate nothing... */ public boolean isFullyOutside(float x, float y) { if (x < outsideLeft || x > outsideRight) return true; if (y < outsideTop || y > outsideBottom) return true; return false; } /** * Average absolute value of the difference between each pixel in the image and the template * @return Average error */ public float getError() { return error; } public ConfigKlt getConfig() { return config; } }