boofcv.alg.tracker.klt.KltTracker Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2020, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.tracker.klt;
import boofcv.alg.InputSanityCheck;
import boofcv.alg.interpolate.InterpolateRectangle;
import boofcv.alg.misc.ImageMiscOps;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.ImageGray;
/**
*
* A Kanade-Lucas-Tomasi (KLT) [1,2,3,4] point feature tracker for a single layer gray scale image. It tracks point features
* across a sequence of images by having each feature individually follow the image's gradient. Feature locations
* are estimated to within sub-pixel accuracy.
*
*
*
* For this particular implementation of KLT, image derivatives is only needed when setDescription() is called.
* Tracker quality will degrade if features change orientation, but this technique is significantly faster.
*
*
*
* Citations:
*
* [1] Bruce D. Lucas and Takeo Kanade. An Iterative Image Registration Technique with an
* Application to Stereo Vision. International Joint Conference on Artificial Intelligence,
* pages 674-679, 1981.
* [2] Carlo Tomasi and Takeo Kanade. Detection and Tracking of Point Features. Carnegie
* Mellon University Technical Report CMU-CS-91-132, April 1991.
* [3] Jianbo Shi and Carlo Tomasi. Good Features to Track. IEEE Conference on Computer
* Vision and Pattern Recognition, pages 593-600, 1994.
* [4] Stan Birchfield, http://www.ces.clemson.edu/~stb/klt/
*
*
* @author Peter Abeles
*/
@SuppressWarnings({"SuspiciousNameCombination"})
public class KltTracker, D extends ImageGray> {
// input image
protected I image;
// image gradient
protected D derivX, derivY;
// Used to interpolate the image and gradient
protected InterpolateRectangle interpInput;
protected InterpolateRectangle interpDeriv;
// tracker configuration
protected ConfigKlt config;
// feature description curvature information
protected float Gxx, Gyy, Gxy;
// residual times the gradient
protected float Ex, Ey;
// Tolerance for drift in pixels. Computed dynamically
protected float maximumDrift;
// width of the feature
protected int widthFeature;
// length of the feature description
protected int lengthFeature;
// the feature in the current image
protected GrayF32 currDesc = new GrayF32(1,1);
// storage for sub-region used when computing interpolation
protected GrayF32 subimage = new GrayF32();
// destination image for current feature data in border case
int dstX0,dstY0,dstX1,dstY1;
// top-left corner of feature in input image for border case
float srcX0 , srcY0;
// allowed feature bounds
float allowedLeft;
float allowedRight;
float allowedTop;
float allowedBottom;
// bounds for checking to see if it is out of the image
float outsideLeft;
float outsideRight;
float outsideTop;
float outsideBottom;
// error between template and the current track position in the image
float error;
public KltTracker(InterpolateRectangle interpInput,
InterpolateRectangle interpDeriv,
ConfigKlt config) {
this.interpInput = interpInput;
this.interpDeriv = interpDeriv;
this.config = config;
}
/**
* Sets the current image it should be tracking with.
*
* @param image Original input image.
* @param derivX Image derivative along the x-axis
* @param derivY Image derivative along the y-axis
*/
public void setImage(I image, D derivX, D derivY) {
InputSanityCheck.checkSameShape(image, derivX, derivY);
this.image = image;
this.interpInput.setImage(image);
this.derivX = derivX;
this.derivY = derivY;
}
/**
* Same as {@link #setImage}, but it doesn't check to see if the images are the same size each time
*/
public void unsafe_setImage(I image, D derivX, D derivY) {
this.image = image;
this.interpInput.setImage(image);
this.derivX = derivX;
this.derivY = derivY;
}
/**
* Sets the features description using the current image and the location of the feature stored in the feature.
* If the feature is an illegal location and cannot be set then false is returned.
* @param feature Feature description which is to be set. Location must be specified.
* @return true if the feature's description was modified.
*/
@SuppressWarnings({"SuspiciousNameCombination"})
public boolean setDescription(KltFeature feature) {
setAllowedBounds(feature);
if (!isFullyInside(feature.x, feature.y)) {
if( isFullyOutside(feature.x,feature.y))
return false;
else
return internalSetDescriptionBorder(feature);
}
return internalSetDescription(feature);
}
protected boolean internalSetDescription(KltFeature feature) {
int regionWidth = feature.radius * 2 + 1;
int size = regionWidth * regionWidth;
float tl_x = feature.x - feature.radius;
float tl_y = feature.y - feature.radius;
interpInput.setImage(image);
interpInput.region(tl_x, tl_y, feature.desc);
interpDeriv.setImage(derivX);
interpDeriv.region(tl_x, tl_y, feature.derivX);
interpDeriv.setImage(derivY);
interpDeriv.region(tl_x, tl_y, feature.derivY);
float Gxx = 0, Gyy = 0, Gxy = 0;
for (int i = 0; i < size; i++) {
float dX = feature.derivX.data[i];
float dY = feature.derivY.data[i];
Gxx += dX * dX;
Gyy += dY * dY;
Gxy += dX * dY;
}
feature.Gxx = Gxx;
feature.Gyy = Gyy;
feature.Gxy = Gxy;
float det = Gxx * Gyy - Gxy * Gxy;
return (det >= config.minDeterminant*lengthFeature);
}
/**
* Computes the descriptor for border features. All it needs to do
* is save the pixel value, but derivative information is also computed
* so that it can reject bad features immediately.
*/
protected boolean internalSetDescriptionBorder(KltFeature feature) {
computeSubImageBounds(feature, feature.x, feature.y);
ImageMiscOps.fill(feature.desc, Float.NaN);
feature.desc.subimage(dstX0, dstY0, dstX1, dstY1, subimage);
interpInput.setImage(image);
interpInput.region(srcX0, srcY0, subimage);
feature.derivX.subimage(dstX0, dstY0, dstX1, dstY1, subimage);
interpDeriv.setImage(derivX);
interpDeriv.region(srcX0, srcY0, subimage);
feature.derivY.subimage(dstX0, dstY0, dstX1, dstY1, subimage);
interpDeriv.setImage(derivY);
interpDeriv.region(srcX0, srcY0, subimage);
int total= 0;
Gxx = Gyy = Gxy = 0;
for( int i = 0; i < lengthFeature; i++ ) {
if( Float.isNaN(feature.desc.data[i]))
continue;
total++;
float dX = feature.derivX.data[i];
float dY = feature.derivY.data[i];
Gxx += dX * dX;
Gyy += dY * dY;
Gxy += dX * dY;
}
// technically don't need to save this...
feature.Gxx = Gxx;
feature.Gyy = Gyy;
feature.Gxy = Gxy;
float det = Gxx * Gyy - Gxy * Gxy;
return (det >= config.minDeterminant*total);
}
/**
*
* Updates the feature's location inside the image. The feature's position can be modified
* even if tracking fails.
*
*
* @param feature Feature being tracked.
* @return If the tracking was successful or not.
*/
public KltTrackFault track(KltFeature feature) {
// precompute bounds and other values
setAllowedBounds(feature);
// sanity check to make sure it is actually inside the image
if ( isFullyOutside(feature.x, feature.y))
return KltTrackFault.OUT_OF_BOUNDS;
if (currDesc.data.length < lengthFeature) {
currDesc.reshape(widthFeature,widthFeature);
}
// save the original location so that a drifting fault can be detected
float origX = feature.x, origY = feature.y;
// If the feature is complete then the fast code can be used when entirely inside
boolean complete = isDescriptionComplete(feature);
float det = 0;
// make sure its inside this image
if ( complete ) {
// see if the determinant is too small
Gxx = feature.Gxx;
Gyy = feature.Gyy;
Gxy = feature.Gxy;
det = Gxx * Gyy - Gxy * Gxy;
if (det < config.minDeterminant*lengthFeature) {
return KltTrackFault.FAILED;
}
}
for (int iter = 0; iter < config.maxIterations; iter++) {
float dx,dy;
if( complete && isFullyInside(feature.x, feature.y) ) {
computeE(feature, feature.x, feature.y);
} else {
// once it goes outside it must remain outside. If it starts outside
int length = computeGandE_border(feature, feature.x, feature.y);
det = Gxx * Gyy - Gxy * Gxy;
if (det <= config.minDeterminant*length) {
return KltTrackFault.FAILED;
}
}
// solve for D
dx = (Gyy * Ex - Gxy * Ey) / det;
dy = (Gxx * Ey - Gxy * Ex) / det;
feature.x += dx;
feature.y += dy;
// see if it moved outside of the image
if ( isFullyOutside(feature.x, feature.y))
return KltTrackFault.OUT_OF_BOUNDS;
// see if it has moved more than possible if it is really tracking a target
// this happens in regions with little texture
if (Math.abs(feature.x - origX) > maximumDrift || Math.abs(feature.y - origY) > maximumDrift)
return KltTrackFault.DRIFTED;
// see if it has converged to a solution
if (Math.abs(dx) < config.minPositionDelta && Math.abs(dy) < config.minPositionDelta) {
break;
}
}
if ( (error=computeError(feature)) > config.maxPerPixelError)
return KltTrackFault.LARGE_ERROR;
return KltTrackFault.SUCCESS;
}
/**
* Precompute image bounds that the feature is allowed inside of
*/
protected void setAllowedBounds(KltFeature feature) {
// compute the feature's width and temporary storage related to it
widthFeature = feature.radius * 2 + 1;
lengthFeature = widthFeature * widthFeature;
maximumDrift = widthFeature*config.driftFracTol;
allowedLeft = feature.radius;
allowedTop = feature.radius;
allowedRight = image.width - feature.radius-1;
allowedBottom = image.height - feature.radius-1;
outsideLeft = -feature.radius;
outsideTop = -feature.radius;
outsideRight = image.width + feature.radius-1;
outsideBottom = image.height + feature.radius-1;
}
private float computeError(KltFeature feature) {
float error = 0;
int total = 0;
for (int i = 0; i < lengthFeature; i++) {
if( Float.isNaN(feature.desc.data[i]) || Float.isNaN(currDesc.data[i]))
continue;
// compute the difference between the previous and the current image
error += Math.abs(feature.desc.data[i] - currDesc.data[i]);
total++;
}
return error / total;
}
protected void computeE(KltFeature feature, float x, float y) {
// extract the region in the current image
interpInput.region(x - feature.radius, y - feature.radius, currDesc);
Ex = 0;
Ey = 0;
for (int i = 0; i < lengthFeature; i++) {
// compute the difference between the previous and the current image
float d = feature.desc.data[i] - currDesc.data[i];
Ex += d * feature.derivX.data[i];
Ey += d * feature.derivY.data[i];
}
}
/**
* When part of the region is outside the image G and E need to be recomputed
*/
protected int computeGandE_border(KltFeature feature, float cx, float cy) {
computeSubImageBounds(feature, cx, cy);
ImageMiscOps.fill(currDesc, Float.NaN);
currDesc.subimage(dstX0, dstY0, dstX1, dstY1, subimage);
interpInput.setImage(image);
interpInput.region(srcX0, srcY0, subimage);
int total = 0;
Gxx = 0; Gyy = 0; Gxy = 0;
Ex = 0; Ey = 0;
for( int i = 0; i < lengthFeature; i++ ) {
float template = feature.desc.data[i];
float current = currDesc.data[i];
// if the description was outside of the image here skip it
if( Float.isNaN(template) || Float.isNaN(current))
continue;
// count total number of points inbounds
total++;
float dX = feature.derivX.data[i];
float dY = feature.derivY.data[i];
// compute the difference between the previous and the current image
float d = template - current;
Ex += d * dX;
Ey += d * dY;
Gxx += dX * dX;
Gyy += dY * dY;
Gxy += dX * dY;
}
return total;
}
private void computeSubImageBounds(KltFeature feature, float cx, float cy) {
// initially include the whole destination image
dstX0 = 0;
dstY0 = 0;
dstX1 = widthFeature;
dstY1 = widthFeature;
// location of upper left corner of feature in input image
srcX0 = cx - feature.radius;
srcY0 = cy - feature.radius;
float srxX1 = srcX0 + widthFeature;
float srxY1 = srcY0 + widthFeature;
// take in account the image border
if( srcX0 < 0 ) {
dstX0 = (int)-Math.floor(srcX0);
srcX0 += dstX0;
}
if( srxX1 > image.width ) {
dstX1 -= (int)Math.ceil(srxX1-image.width);
// rounding error
dstX1 -= (srcX0 + (dstX1-dstX0) > image.width ? 1 : 0);
}
if( srcY0 < 0 ) {
dstY0 = (int)-Math.floor(srcY0);
srcY0 += dstY0;
}
if( srxY1 > image.height ) {
dstY1 -= (int)Math.ceil(srxY1-image.height);
// rounding error
dstY1 -= srcY0 + (dstY1-dstY0) > image.height ? 1 : 0;
}
if( srcX0 < 0 || srcY0 < 0 || srcX0 + (dstX1-dstX0) > image.width || srcY0 + (dstY1-dstY0) > image.height ) {
throw new IllegalArgumentException("Region is outside of the image");
}
}
/**
* Checks to see if the feature description is complete or if it was created by a feature partially
* outside the image
*/
public boolean isDescriptionComplete( KltFeature feature ) {
for( int i = 0; i < lengthFeature; i++ ) {
if( Float.isNaN(feature.desc.data[i]) )
return false;
}
return true;
}
/**
* Returns true if the features is entirely enclosed inside of the image.
*/
public boolean isFullyInside(float x, float y) {
if (x < allowedLeft || x > allowedRight)
return false;
if (y < allowedTop || y > allowedBottom)
return false;
return true;
}
/**
* Returns true if the features is entirely outside of the image. A region is entirely outside if not
* an entire pixel is contained inside the image. So if only 0.999 of a pixel is inside then the whole
* region is considered to be outside. Can't interpolate nothing...
*/
public boolean isFullyOutside(float x, float y) {
if (x < outsideLeft || x > outsideRight)
return true;
if (y < outsideTop || y > outsideBottom)
return true;
return false;
}
/**
* Average absolute value of the difference between each pixel in the image and the template
* @return Average error
*/
public float getError() {
return error;
}
public ConfigKlt getConfig() {
return config;
}
}