
boofcv.alg.background.moving.BackgroundMovingGaussian_PL_MT Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-feature Show documentation
Show all versions of boofcv-feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
The newest version!
/*
* Copyright (c) 2021, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.background.moving;
import javax.annotation.Generated;
import boofcv.alg.interpolate.InterpolatePixelMB;
import boofcv.alg.interpolate.InterpolationType;
import boofcv.alg.misc.GImageMiscOps;
import boofcv.alg.misc.ImageMiscOps;
import boofcv.core.image.FactoryGImageMultiBand;
import boofcv.core.image.GImageMultiBand;
import boofcv.factory.interpolate.FactoryInterpolation;
import boofcv.struct.border.BorderType;
import boofcv.struct.distort.Point2Transform2Model_F32;
import boofcv.struct.image.*;
import georegression.struct.InvertibleTransform;
import georegression.struct.point.Point2D_F32;
import pabeles.concurrency.GrowArray;
import boofcv.concurrency.BoofConcurrency;
/**
* Implementation of {@link BackgroundMovingGaussian} for {@link Planar}.
*
* @author Peter Abeles
*/
@Generated("boofcv.alg.background.moving.BackgroundMovingGaussian_PL")
public class BackgroundMovingGaussian_PL_MT, Motion extends InvertibleTransform>
extends BackgroundMovingGaussian, Motion> {
// interpolates the input image
protected InterpolatePixelMB> _interpolationInput;
// interpolates the background image
protected InterpolatePixelMB _interpolationBG;
// wrappers which provide abstraction across image types
protected GImageMultiBand inputWrapper;
// background is composed of bands*2 channels. even = mean, odd = variance
InterleavedF32 background;
protected GrowArray helpers;
protected Helper helper;
/**
* Configurations background removal.
*
* @param learnRate Specifies how quickly the background is updated. 0 = static 1.0 = instant. Try 0.05
* @param threshold Threshold for background. Consult a chi-square table for reasonably values.
* 10 to 16 for 1 to 3 bands.
* @param transform Used to apply motion model
* @param interpType Type of interpolation. BILINEAR recommended for accuracy. NEAREST_NEIGHBOR for speed. .
* @param imageType Type of input image.
*/
public BackgroundMovingGaussian_PL_MT( float learnRate, float threshold,
Point2Transform2Model_F32 transform,
InterpolationType interpType,
ImageType> imageType ) {
super(learnRate, threshold, transform, imageType);
int numBands = imageType.getNumBands();
this._interpolationInput = FactoryInterpolation.createPixelMB(0, 255,
InterpolationType.BILINEAR, BorderType.EXTENDED, imageType);
background = new InterleavedF32(1, 1, 2*numBands);
this._interpolationBG = FactoryInterpolation.createPixelMB(
0, 255, interpType, BorderType.EXTENDED, ImageType.il(numBands*2, InterleavedF32.class));
this._interpolationBG.setImage(background);
inputWrapper = FactoryGImageMultiBand.create(imageType);
helpers = new GrowArray<>(() -> new Helper(imageType.numBands));
helper = helpers.grow();
}
@Override public void initialize( int backgroundWidth, int backgroundHeight, Motion homeToWorld ) {
background.reshape(backgroundWidth, backgroundHeight);
GImageMiscOps.fill(background, -1);
this.homeToWorld.setTo(homeToWorld);
this.homeToWorld.invert(worldToHome);
this.backgroundWidth = backgroundWidth;
this.backgroundHeight = backgroundHeight;
}
@Override public void reset() {
ImageMiscOps.fill(background, -1);
}
@Override protected void updateBackground( int x0, int y0, int x1, int y1, Planar frame ) {
BoofConcurrency.loopBlocks(y0, y1, 20, helpers, (helper, idx0, idx1) -> {
helper.updateBackground(x0, idx0, x1, idx1, frame);
});
}
@Override protected void _segment( Motion currentToWorld, Planar frame, GrayU8 segmented ) {
inputWrapper.wrap(frame);
BoofConcurrency.loopBlocks(0, frame.height, 20, helpers, (helper, idx0, idx1) -> {
helper.segment(idx0, idx1, currentToWorld, frame, segmented);
});
}
private class Helper {
final private float[] valueInput;
final private float[] valueBG;
final private Point2D_F32 pixel = new Point2D_F32();
final private Point2Transform2Model_F32 transform;
final private InterpolatePixelMB> interpolationInput;
final private InterpolatePixelMB interpolationBG;
public Helper( int numBands ) {
valueInput = new float[numBands];
valueBG = new float[2*numBands];
transform = (Point2Transform2Model_F32)_transform.copyConcurrent();
interpolationInput = _interpolationInput.copy();
interpolationBG = _interpolationBG.copy();
interpolationBG.setImage(background);
}
public void updateBackground( int x0, int y0, int x1, int y1, Planar frame ) {
interpolationInput.setImage(frame);
float minusLearn = 1.0f - learnRate;
final int numBands = background.getNumBands()/2;
transform.setModel(worldToCurrent);
for (int y = y0; y < y1; y++) {
int indexBG = background.startIndex + y*background.stride + x0*background.numBands;
for (int x = x0; x < x1; x++, indexBG += background.numBands) {
transform.compute(x, y, pixel);
if (!(pixel.x >= 0 && pixel.x < frame.width && pixel.y >= 0 && pixel.y < frame.height)) {
continue;
}
interpolationInput.get(pixel.x, pixel.y, valueInput);
for (int band = 0; band < numBands; band++) {
int indexBG_band = indexBG + band*2;
float inputValue = valueInput[band];
float meanBG = background.data[indexBG_band];
float varianceBG = background.data[indexBG_band + 1];
if (varianceBG < 0) {
background.data[indexBG_band] = inputValue;
background.data[indexBG_band + 1] = initialVariance;
} else {
float diff = meanBG - inputValue;
background.data[indexBG_band] = minusLearn*meanBG + learnRate*inputValue;
background.data[indexBG_band + 1] = minusLearn*varianceBG + learnRate*diff*diff;
}
}
}
}
}
protected void segment( int y0, int y1, Motion currentToWorld, Planar frame, GrayU8 segmented ) {
final int numBands = background.getNumBands()/2;
float adjustedMinimumDifference = minimumDifference*numBands;
transform.setModel(currentToWorld);
for (int y = y0; y < y1; y++) {
int indexFrame = frame.startIndex + y*frame.stride;
int indexSegmented = segmented.startIndex + y*segmented.stride;
for (int x = 0; x < frame.width; x++, indexFrame++, indexSegmented++) {
transform.compute(x, y, pixel);
escapeIf:
if (pixel.x >= 0 && pixel.x < background.width && pixel.y >= 0 && pixel.y < background.height) {
interpolationBG.get(pixel.x, pixel.y, valueBG);
inputWrapper.getF(indexFrame, valueInput);
float mahalanobis = 0;
for (int band = 0; band < numBands; band++) {
float meanBG = valueBG[band*2];
float varBG = valueBG[band*2 + 1];
if (varBG < 0) {
segmented.data[indexSegmented] = unknownValue;
break escapeIf;
} else {
float diff = meanBG - valueInput[band];
mahalanobis += diff*diff/varBG;
}
}
if (mahalanobis <= threshold) {
segmented.data[indexSegmented] = 0;
} else {
if (minimumDifference > 0) {
float sumAbsDiff = 0;
for (int band = 0; band < numBands; band++) {
sumAbsDiff += Math.abs(valueBG[band*2] - valueInput[band]);
}
segmented.data[indexSegmented] = (byte)(sumAbsDiff >= adjustedMinimumDifference ? 1 : 0);
} else {
segmented.data[indexSegmented] = 1;
}
}
} else {
// there is no background here. Just mark it as not moving to avoid false positives
segmented.data[indexSegmented] = unknownValue;
}
}
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy