
boofcv.alg.background.stationary.BackgroundStationaryGmm_SB Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-feature Show documentation
Show all versions of boofcv-feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
The newest version!
/*
* Copyright (c) 2021, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.background.stationary;
import boofcv.alg.background.BackgroundAlgorithmGmm;
import boofcv.alg.misc.ImageMiscOps;
import boofcv.struct.image.GrayU8;
import boofcv.struct.image.ImageGray;
import boofcv.struct.image.ImageType;
import org.jetbrains.annotations.Nullable;
//CONCURRENT_INLINE import boofcv.concurrency.BoofConcurrency;
/**
* Implementation of {@link BackgroundAlgorithmGmm} for {@link ImageGray}.
*
* @author Peter Abeles
*/
public class BackgroundStationaryGmm_SB> extends BackgroundStationaryGmm {
/**
* @param learningPeriod Specifies how fast it will adjust to changes in the image. Must be greater than zero.
* @param decayCoef Determines how quickly a Gaussian is forgotten
* @param maxGaussians Maximum number of Gaussians in a mixture for a pixel
* @param imageType Type of image it's processing.
*/
public BackgroundStationaryGmm_SB( float learningPeriod, float decayCoef,
int maxGaussians, ImageType imageType ) {
super(learningPeriod, decayCoef, maxGaussians, imageType);
}
@Override public void updateBackground( T frame, @Nullable GrayU8 mask ) {
super.updateBackground(frame, mask);
common.inputWrapperG.wrap(frame);
//CONCURRENT_BELOW BoofConcurrency.loopFor(0, common.imageHeight, row -> {
for (int row = 0; row < common.imageHeight; row++) {
int inputIndex = frame.startIndex + row*frame.stride;
float[] dataRow = common.model.data[row];
if (mask == null) {
for (int col = 0; col < common.imageWidth; col++) {
float pixelValue = common.inputWrapperG.getF(inputIndex++);
int modelIndex = col*common.modelStride;
common.updateMixture(pixelValue, dataRow, modelIndex);
}
} else {
int indexMask = mask.startIndex + row*mask.stride;
for (int col = 0; col < common.imageWidth; col++) {
float pixelValue = common.inputWrapperG.getF(inputIndex++);
int modelIndex = col*common.modelStride;
mask.data[indexMask++] = (byte)common.updateMixture(pixelValue, dataRow, modelIndex);
}
}
}
//CONCURRENT_ABOVE });
}
@Override public void segment( T frame, GrayU8 segmented ) {
segmented.reshape(frame.width, frame.height);
if (common.imageWidth != frame.width || common.imageHeight != frame.height) {
ImageMiscOps.fill(segmented, unknownValue);
return;
}
common.unknownValue = unknownValue;
common.inputWrapperG.wrap(frame);
//CONCURRENT_BELOW BoofConcurrency.loopFor(0, common.imageHeight, row -> {
for (int row = 0; row < common.imageHeight; row++) {
int indexIn = frame.startIndex + row*frame.stride;
int indexOut = segmented.startIndex + row*segmented.stride;
float[] dataRow = common.model.data[row];
for (int col = 0; col < common.imageWidth; col++) {
float pixelValue = common.inputWrapperG.getF(indexIn++);
int modelIndex = col*common.modelStride;
segmented.data[indexOut++] = (byte)common.checkBackground(pixelValue, dataRow, modelIndex);
}
}
//CONCURRENT_ABOVE });
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy