All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.feature.orientation.impl.ImplOrientationImageAverageIntegral Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

The newest version!
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.feature.orientation.impl;

import boofcv.abst.feature.orientation.RegionOrientation;
import boofcv.alg.feature.orientation.OrientationIntegralBase;
import boofcv.factory.transform.ii.FactorySparseIntegralFilters;
import boofcv.struct.convolve.Kernel2D_F64;
import boofcv.struct.image.ImageGray;
import boofcv.struct.sparse.GradientValue;
import boofcv.struct.sparse.SparseScaleSample_F64;

/**
 * 

* Estimates the orientation of a region using a "derivative free" method. Points are sampled using * an integral image. *

* * @author Peter Abeles */ public class ImplOrientationImageAverageIntegral, G extends GradientValue> extends OrientationIntegralBase { // cosine values for each pixel protected Kernel2D_F64 kerCosine; // sine values for each pixel protected Kernel2D_F64 kerSine; private final SparseScaleSample_F64 sampler; /** * @param sampleRadius Radius of the region being considered in terms of Wavelet samples. Typically 6. * @param weightSigma Sigma for weighting distribution. Zero for unweighted. */ public ImplOrientationImageAverageIntegral( double radiusToScale, int sampleRadius, double period, int kernelWidth, double weightSigma, Class imageType ) { super(radiusToScale, sampleRadius, period, kernelWidth, weightSigma, false, imageType); int w = sampleRadius*2 + 1; kerCosine = new Kernel2D_F64(w); kerSine = new Kernel2D_F64(w); for (int y = -sampleRadius; y <= sampleRadius; y++) { int pixelY = y + sampleRadius; for (int x = -sampleRadius; x <= sampleRadius; x++) { int pixelX = x + sampleRadius; float r = (float)Math.sqrt(x*x + y*y); kerCosine.set(pixelX, pixelY, (float)x/r); kerSine.set(pixelX, pixelY, (float)y/r); } } kerCosine.set(sampleRadius, sampleRadius, 0); kerSine.set(sampleRadius, sampleRadius, 0); sampler = FactorySparseIntegralFilters.sample(imageType); setObjectRadius(1.0/objectRadiusToScale); } @Override public void setImage( T integralImage ) { super.setImage(integralImage); sampler.setImage(integralImage); } @Override public void setObjectRadius( double radius ) { super.setObjectRadius(radius); sampler.setWidth(kernelWidth*scale); } @Override public double compute( double c_x, double c_y ) { double period = scale*this.period; double tl_x = c_x - sampleRadius*period; double tl_y = c_y - sampleRadius*period; if (weights == null) return computeUnweighted(tl_x, tl_y, period); else return computeWeighted(tl_x, tl_y, period); } protected double computeUnweighted( double tl_x, double tl_y, double samplePeriod ) { // add 0.5 to c_x and c_y to have it round tl_x += 0.5; tl_y += 0.5; double Dx = 0, Dy = 0; int i = 0; for (int y = 0; y < sampleWidth; y++) { int pixelY = (int)(tl_y + y*samplePeriod); for (int x = 0; x < sampleWidth; x++, i++) { int pixelX = (int)(tl_x + x*samplePeriod); if (sampler.isInBounds(pixelX, pixelY)) { try { double val = sampler.compute(pixelX, pixelY); Dx += kerCosine.data[i]*val; Dy += kerSine.data[i]*val; } catch (RuntimeException e) { sampler.isInBounds(pixelX, pixelY); sampler.compute(pixelX, pixelY); throw e; } } } } return Math.atan2(Dy, Dx); } protected double computeWeighted( double tl_x, double tl_y, double samplePeriod ) { // add 0.5 to c_x and c_y to have it round tl_x += 0.5; tl_y += 0.5; double Dx = 0, Dy = 0; int i = 0; for (int y = 0; y < sampleWidth; y++) { int pixelY = (int)(tl_y + y*samplePeriod); for (int x = 0; x < sampleWidth; x++, i++) { int pixelX = (int)(tl_x + x*samplePeriod); if (sampler.isInBounds(pixelX, pixelY)) { double val = sampler.compute(pixelX, pixelY); double w = weights.data[i]; Dx += w*kerCosine.data[i]*val; Dy += w*kerSine.data[i]*val; } } } return Math.atan2(Dy, Dx); } @Override public RegionOrientation copy() { return new ImplOrientationImageAverageIntegral<>( objectRadiusToScale, sampleRadius, period, kernelWidth, weightSigma, getImageType()); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy