All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.factory.segmentation.FactorySegmentationAlg Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

The newest version!
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.factory.segmentation;

import boofcv.alg.interpolate.InterpolatePixelMB;
import boofcv.alg.interpolate.InterpolatePixelS;
import boofcv.alg.interpolate.InterpolationType;
import boofcv.alg.segmentation.ComputeRegionMeanColor;
import boofcv.alg.segmentation.fh04.FhEdgeWeights;
import boofcv.alg.segmentation.fh04.SegmentFelzenszwalbHuttenlocher04;
import boofcv.alg.segmentation.fh04.impl.*;
import boofcv.alg.segmentation.ms.*;
import boofcv.alg.segmentation.slic.*;
import boofcv.alg.segmentation.watershed.WatershedVincentSoille1991;
import boofcv.factory.interpolate.FactoryInterpolation;
import boofcv.struct.ConnectRule;
import boofcv.struct.border.BorderType;
import boofcv.struct.image.ImageBase;
import boofcv.struct.image.ImageType;
import org.jetbrains.annotations.Nullable;

/**
 * Factory for low level segmentation algorithms.
 *
 * @author Peter Abeles
 */
@SuppressWarnings({"MissingCasesInEnumSwitch"})
public class FactorySegmentationAlg {

	/**
	 * Creates an instance of {@link boofcv.alg.segmentation.ComputeRegionMeanColor} for the specified image type.
	 *
	 * @param imageType image type
	 * @return ComputeRegionMeanColor
	 */
	public static >
	ComputeRegionMeanColor regionMeanColor( ImageType imageType ) {
		if (imageType.getFamily() == ImageType.Family.GRAY) {
			switch (imageType.getDataType()) {
				case U8:
					return (ComputeRegionMeanColor)new ComputeRegionMeanColor.U8();
				case F32:
					return (ComputeRegionMeanColor)new ComputeRegionMeanColor.F32();
			}
		} else if (imageType.getFamily() == ImageType.Family.PLANAR) {
			int N = imageType.getNumBands();
			switch (imageType.getDataType()) {
				case U8:
					return (ComputeRegionMeanColor)new ComputeRegionMeanColor.PL_U8(N);
				case F32:
					return (ComputeRegionMeanColor)new ComputeRegionMeanColor.PL_F32(N);
			}
		}

		throw new IllegalArgumentException("Unknown imageType");
	}

	/**
	 * Creates an instance of {@link boofcv.alg.segmentation.ms.SegmentMeanShift}. Uniform distributions are used for spacial and color
	 * weights.
	 *
	 * @param config Specify configuration for mean-shift
	 * @param imageType Type of input image
	 * @return SegmentMeanShift
	 */
	public static >
	SegmentMeanShift meanShift( @Nullable ConfigSegmentMeanShift config, ImageType imageType ) {
		if (config == null)
			config = new ConfigSegmentMeanShift();

		int spacialRadius = config.spacialRadius;
		float colorRadius = config.colorRadius;

		int maxIterations = 20;
		float convergenceTol = 0.1f;

		SegmentMeanShiftSearch search;

		if (imageType.getFamily() == ImageType.Family.GRAY) {
			InterpolatePixelS interp = FactoryInterpolation.bilinearPixelS(imageType.getImageClass(), BorderType.EXTENDED);
			search = new SegmentMeanShiftSearchGray(maxIterations, convergenceTol, interp,
					spacialRadius, spacialRadius, colorRadius, config.fast);
		} else {
			InterpolatePixelMB interp = FactoryInterpolation.createPixelMB(0, 255,
					InterpolationType.BILINEAR, BorderType.EXTENDED, (ImageType)imageType);
			search = new SegmentMeanShiftSearchColor(maxIterations, convergenceTol, interp,
					spacialRadius, spacialRadius, colorRadius, config.fast, imageType);
		}

		ComputeRegionMeanColor regionColor = regionMeanColor(imageType);
		MergeRegionMeanShift merge = new MergeRegionMeanShift(spacialRadius/2 + 1, Math.max(1, colorRadius/2));

		MergeSmallRegions prune = config.minimumRegionSize >= 2 ?
				new MergeSmallRegions<>(config.minimumRegionSize, config.connectRule, regionColor) : null;

		return new SegmentMeanShift<>(search, merge, prune, config.connectRule);
	}

	public static >
	FhEdgeWeights weightsFelzenszwalb04( ConnectRule rule, ImageType imageType ) {
		if (imageType.getFamily() == ImageType.Family.GRAY) {
			if (rule == ConnectRule.FOUR) {
				switch (imageType.getDataType()) {
					case U8:
						return (FhEdgeWeights)new FhEdgeWeights4_U8();
					case F32:
						return (FhEdgeWeights)new FhEdgeWeights4_F32();
				}
			} else if (rule == ConnectRule.EIGHT) {
				switch (imageType.getDataType()) {
					case U8:
						return (FhEdgeWeights)new FhEdgeWeights8_U8();
					case F32:
						return (FhEdgeWeights)new FhEdgeWeights8_F32();
				}
			}
		} else if (imageType.getFamily() == ImageType.Family.PLANAR) {
			if (rule == ConnectRule.FOUR) {
				switch (imageType.getDataType()) {
					case U8:
						return (FhEdgeWeights)new FhEdgeWeights4_PLU8();
					case F32:
						return (FhEdgeWeights)new FhEdgeWeights4_PLF32();
				}
			} else if (rule == ConnectRule.EIGHT) {
				switch (imageType.getDataType()) {
					case U8:
						return (FhEdgeWeights)new FhEdgeWeights8_PLU8();
					case F32:
						return (FhEdgeWeights)new FhEdgeWeights8_PLF32();
				}
			}
		}

		throw new IllegalArgumentException("Unknown imageType or connect rule");
	}

	public static >
	SegmentFelzenszwalbHuttenlocher04 fh04( @Nullable ConfigFh04 config, ImageType imageType ) {

		if (config == null)
			config = new ConfigFh04();

		FhEdgeWeights edgeWeights = weightsFelzenszwalb04(config.connectRule, imageType);

		SegmentFelzenszwalbHuttenlocher04 alg =
				new SegmentFelzenszwalbHuttenlocher04<>(config.K, config.minimumRegionSize, edgeWeights);

		if (config.approximateSortBins > 0) {
			alg.configureApproximateSort(config.approximateSortBins);
		}

		return alg;
	}

	public static >
	SegmentSlic slic( @Nullable ConfigSlic config, ImageType imageType ) {
		if (config == null)
			throw new IllegalArgumentException("No default configuration since the number of segments must be specified.");

		if (imageType.getFamily() == ImageType.Family.GRAY) {
			switch (imageType.getDataType()) {
				case U8:
					return (SegmentSlic)new SegmentSlic_U8(config.numberOfRegions,
							config.spacialWeight, config.totalIterations, config.connectRule);
				case F32:
					return (SegmentSlic)new SegmentSlic_F32(config.numberOfRegions,
							config.spacialWeight, config.totalIterations, config.connectRule);
			}
		} else if (imageType.getFamily() == ImageType.Family.PLANAR) {
			int N = imageType.getNumBands();
			switch (imageType.getDataType()) {
				case U8:
					return (SegmentSlic)new SegmentSlic_PlU8(config.numberOfRegions,
							config.spacialWeight, config.totalIterations, config.connectRule, N);
				case F32:
					return (SegmentSlic)new SegmentSlic_PlF32(config.numberOfRegions,
							config.spacialWeight, config.totalIterations, config.connectRule, N);
			}
		}
		throw new IllegalArgumentException("Unknown imageType or connect rule");
	}

	public static WatershedVincentSoille1991 watershed( ConnectRule rule ) {
		if (rule == ConnectRule.FOUR)
			return new WatershedVincentSoille1991.Connect4();
		else if (rule == ConnectRule.EIGHT)
			return new WatershedVincentSoille1991.Connect8();
		else
			throw new IllegalArgumentException("Unknown connectivity rule");
	}
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy