boofcv.abst.geo.GeoModelEstimatorNto1 Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.abst.geo;
import boofcv.struct.geo.GeoModelEstimator1;
import boofcv.struct.geo.GeoModelEstimatorN;
import org.ddogleg.fitting.modelset.DistanceFromModel;
import org.ddogleg.struct.FastQueue;
import java.util.ArrayList;
import java.util.List;
/**
* Wrapper that allows {@link GeoModelEstimatorN} to be used as a {@link GeoModelEstimator1}. If more than one
* solution is found the ambiguity is resolved by computing the distance each hypothesis is away from a set of points
* not used to compute the model.
*
* @author Peter Abeles
*/
public abstract class GeoModelEstimatorNto1 implements GeoModelEstimator1 {
// Algorithm which generates multiple hypotheses
private GeoModelEstimatorN alg;
// measures how close of a fit the observation is to the model
private DistanceFromModel distance;
// number of sample points used to evaluate hypotheses
private int numTest;
// list of points passed to the algorithm
private List list = new ArrayList<>();
// storage for initial set of solutions
private FastQueue solutions;
public GeoModelEstimatorNto1(GeoModelEstimatorN alg,
DistanceFromModel distance ,
FastQueue solutions ,
int numTest) {
this.alg = alg;
this.numTest = numTest;
this.distance = distance;
this.solutions = solutions;
}
@Override
public boolean process(List points , Model estimatedModel ) {
// only pass in the required number of points
list.clear();
for (int i = 0; i < points.size() - numTest; i++) {
list.add(points.get(i));
}
// compute the hypotheses
if (!alg.process(list, solutions))
return false;
Model best = null;
int N = solutions.size();
if (N == 1) {
best = solutions.get(0);
} else if( N > 1 ) {
double bestScore = Double.MAX_VALUE;
for (int i = 0; i < N; i++) {
Model m = solutions.get(i);
distance.setModel(m);
// select the best solution
double score = 0;
for (int j = list.size(); j < points.size(); j++) {
score += distance.computeDistance(points.get(j));
}
if (score < bestScore) {
bestScore = score;
best = m;
}
}
}
if( best != null ) {
copy(best, estimatedModel);
return true;
}
return false;
}
/**
* Copies src into dst
*/
protected abstract void copy( Model src, Model dst );
@Override
public int getMinimumPoints() {
return alg.getMinimumPoints() + numTest;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy