boofcv.alg.cloud.PointCloudUtils Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-geo Show documentation
Show all versions of boofcv-geo Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.cloud;
import boofcv.alg.nn.KdTreePoint3D_F64;
import georegression.struct.point.Point3D_F64;
import org.ddogleg.nn.FactoryNearestNeighbor;
import org.ddogleg.nn.NearestNeighbor;
import org.ddogleg.nn.NnData;
import org.ddogleg.struct.FastQueue;
import org.ddogleg.struct.GrowQueue_I32;
import java.util.List;
/**
* @author Peter Abeles
*/
public class PointCloudUtils {
/**
* Automatically rescales the point cloud based so that it has a standard deviation of 'target'
* @param cloud The point cloud
* @param target The desired standard deviation of the cloud. Try 100
* @return The selected scale factor
*/
public static double autoScale( List cloud , double target ) {
Point3D_F64 mean = new Point3D_F64();
Point3D_F64 stdev = new Point3D_F64();
statistics(cloud, mean, stdev);
double scale = target/(Math.max(Math.max(stdev.x,stdev.y),stdev.z));
int N = cloud.size();
for (int i = 0; i < N ; i++) {
cloud.get(i).scale(scale);
}
return scale;
}
/**
* Computes the mean and standard deviation of each axis in the point cloud computed in dependently
* @param cloud (Input) Cloud
* @param mean (Output) mean of each axis
* @param stdev (Output) standard deviation of each axis
*/
public static void statistics( List cloud , Point3D_F64 mean , Point3D_F64 stdev ) {
final int N = cloud.size();
for (int i = 0; i < N; i++) {
Point3D_F64 p = cloud.get(i);
mean.x += p.x / N;
mean.y += p.y / N;
mean.z += p.z / N;
}
for (int i = 0; i < N; i++) {
Point3D_F64 p = cloud.get(i);
double dx = p.x-mean.x;
double dy = p.y-mean.y;
double dz = p.z-mean.z;
stdev.x += dx*dx/N;
stdev.y += dy*dy/N;
stdev.z += dz*dz/N;
}
stdev.x = Math.sqrt(stdev.x);
stdev.y = Math.sqrt(stdev.y);
stdev.z = Math.sqrt(stdev.z);
}
/**
* Prunes points from the point cloud if they have very few neighbors
*
* @param cloud Point cloud
* @param minNeighbors Minimum number of neighbors for it to not be pruned
* @param radius search distance for neighbors
*/
public static void prune(List cloud , int minNeighbors , double radius ) {
if( minNeighbors < 0 )
throw new IllegalArgumentException("minNeighbors must be >= 0");
NearestNeighbor nn = FactoryNearestNeighbor.kdtree(new KdTreePoint3D_F64() );
nn.setPoints(cloud,false);
FastQueue> results = new FastQueue(NnData.class,true);
// It will always find itself
minNeighbors += 1;
// distance is Euclidean squared
radius *= radius;
for( int i = cloud.size()-1; i >= 0; i-- ) {
nn.findNearest(cloud.get(i),radius,minNeighbors,results);
if( results.size < minNeighbors ) {
cloud.remove(i);
}
}
}
/**
* Prunes points from the point cloud if they have very few neighbors
*
* @param cloud Point cloud
* @param colors Color of each point.
* @param minNeighbors Minimum number of neighbors for it to not be pruned
* @param radius search distance for neighbors
*/
public static void prune(List cloud , GrowQueue_I32 colors, int minNeighbors , double radius ) {
if( minNeighbors < 0 )
throw new IllegalArgumentException("minNeighbors must be >= 0");
NearestNeighbor nn = FactoryNearestNeighbor.kdtree(new KdTreePoint3D_F64());
nn.setPoints(cloud,false);
FastQueue> results = new FastQueue(NnData.class,true);
// It will always find itself
minNeighbors += 1;
// distance is Euclidean squared
radius *= radius;
for( int i = cloud.size()-1; i >= 0; i-- ) {
nn.findNearest(cloud.get(i),radius,minNeighbors,results);
if( results.size < minNeighbors ) {
cloud.remove(i);
colors.remove(i);
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy