boofcv.alg.geo.DecomposeEssential Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.geo;
import georegression.struct.point.Vector3D_F64;
import georegression.struct.se.Se3_F64;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.SingularOps_DDRM;
import org.ejml.dense.row.factory.DecompositionFactory_DDRM;
import org.ejml.interfaces.decomposition.SingularValueDecomposition;
import java.util.ArrayList;
import java.util.List;
/**
*
* Decomposed the essential matrix into a rigid body motion; rotation and translation. This is the rigid body
* transformation from the first camera frame into the second camera frame. A total f four possible motions
* will be found and the ambiguity can be removed by calling {@link PositiveDepthConstraintCheck} on each hypothesis.
*
*
*
* An essential matrix is defined as E=cross(T)*R, where cross(T) is a cross product matrix,
* T is translation vector, and R is a 3x3 rotation matrix. The decomposition works by computing
* the SVD of E. For more details see "An Invitation to 3-D Vision" 1st edition page 116.
*
*
* @author Peter Abeles
*/
public class DecomposeEssential {
private SingularValueDecomposition svd = DecompositionFactory_DDRM.svd(3, 3, true, true, false);
// storage for SVD
DMatrixRMaj U,S,V;
// storage for the four possible solutions
List solutions = new ArrayList<>();
// working copy of E
DMatrixRMaj E_copy = new DMatrixRMaj(3,3);
// local storage used when computing a hypothesis
DMatrixRMaj temp = new DMatrixRMaj(3,3);
DMatrixRMaj temp2 = new DMatrixRMaj(3,3);
DMatrixRMaj Rz = new DMatrixRMaj(3,3);
public DecomposeEssential() {
solutions.add( new Se3_F64());
solutions.add( new Se3_F64());
solutions.add( new Se3_F64());
solutions.add( new Se3_F64());
Rz.set(0,1,1);
Rz.set(1,0,-1);
Rz.set(2,2,1);
}
/**
* Computes the decomposition from an essential matrix.
*
* @param E essential matrix
*/
public void decompose( DMatrixRMaj E ) {
if( svd.inputModified() ) {
E_copy.set(E);
E = E_copy;
}
if( !svd.decompose(E))
throw new RuntimeException("Svd some how failed");
U = svd.getU(U,false);
V = svd.getV(V,false);
S = svd.getW(S);
SingularOps_DDRM.descendingOrder(U,false,S,V,false);
decompose(U, S, V);
}
/**
* Compute the decomposition given the SVD of E=U*S*VT.
*
* @param U Orthogonal matrix from SVD.
* @param S Diagonal matrix containing singular values from SVD.
* @param V Orthogonal matrix from SVD.
*/
public void decompose( DMatrixRMaj U , DMatrixRMaj S , DMatrixRMaj V ) {
// this ensures the resulting rotation matrix will have a determinant of +1 and thus be a real rotation matrix
if( CommonOps_DDRM.det(U) < 0 ) {
CommonOps_DDRM.scale(-1,U);
CommonOps_DDRM.scale(-1,S);
}
if( CommonOps_DDRM.det(V) < 0 ) {
CommonOps_DDRM.scale(-1,V);
CommonOps_DDRM.scale(-1,S);
}
// for possible solutions due to ambiguity in the sign of T and rotation
extractTransform(U, V, S, solutions.get(0), true, true);
extractTransform(U, V, S, solutions.get(1), true, false);
extractTransform(U, V, S, solutions.get(2) , false,false);
extractTransform(U, V, S, solutions.get(3), false, true);
}
/**
*
* Returns the four possible solutions found in the decomposition. The returned motions go from the
* first into the second camera frame.
*
*
*
* WARNING: This list is modified on each call to decompose. Create a copy of any
* solution that needs to be saved.
*
*
* @return Four possible solutions to the decomposition
*/
public List getSolutions() {
return solutions;
}
/**
* There are four possible reconstructions from an essential matrix. This function will compute different
* permutations depending on optionA and optionB being true or false.
*/
private void extractTransform( DMatrixRMaj U , DMatrixRMaj V , DMatrixRMaj S ,
Se3_F64 se , boolean optionA , boolean optionB )
{
DMatrixRMaj R = se.getR();
Vector3D_F64 T = se.getT();
// extract rotation
if( optionA )
CommonOps_DDRM.mult(U,Rz,temp);
else
CommonOps_DDRM.multTransB(U,Rz,temp);
CommonOps_DDRM.multTransB(temp,V,R);
// extract screw symmetric translation matrix
if( optionB )
CommonOps_DDRM.multTransB(U,Rz,temp);
else
CommonOps_DDRM.mult(U,Rz,temp);
CommonOps_DDRM.mult(temp,S,temp2);
CommonOps_DDRM.multTransB(temp2,U,temp);
T.x = temp.get(2,1);
T.y = temp.get(0,2);
T.z = temp.get(1,0);
}
}