boofcv.alg.geo.RodriguesRotationJacobian Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.geo;
import org.ejml.data.DMatrixRMaj;
/**
* Computes the rotation matrix derivative for Rodrigues coordinates
* which have been parameterized by a 3 vector. The rotation is equal to
* the vector's magnitude and the rotation vector is the unit vector.
*
* @author Peter Abeles
*/
public class RodriguesRotationJacobian {
// partial for vector x component
public DMatrixRMaj Rx = new DMatrixRMaj(3,3);
// partial for vector x component
public DMatrixRMaj Ry = new DMatrixRMaj(3,3);
// partial for vector y component
public DMatrixRMaj Rz = new DMatrixRMaj(3,3);
/**
* Computes the Rodrigues coordinate Jacobian
*
* @param x x-component of Rodrigues parametrization.
* @param y y-component of Rodrigues parametrization.
* @param z z-component of Rodrigues parametrization.
*/
public void process( double x , double y , double z ) {
double theta2 = x*x + y*y + z*z;
double theta = Math.sqrt(theta2);
double theta4 = theta2*theta2;
double theta3 = theta2*theta;
if( theta4 == 0 ) {
Rx.zero();Ry.zero();Rz.zero();
Rx.set(1,2,1);
Rx.set(2,1,-1);
Ry.set(0,2,-1);
Ry.set(2,0,1);
Rz.set(0,1,1);
Rz.set(1,0,-1);
} else {
// computed using sage by differentiating:
// R = I + (hat(w)/theta)*sin(theta) + ((hat(w)/theta)^2)*(1-cos(theta))
// theta = sqrt(x*x + y*y + z*z)
// Then the equations were further simplified by hand
double s = Math.sin(theta);
double c = Math.cos(theta);
double cm = c-1;
double xxx = x*x*x*s/theta3 + 2*cm*x*x*x/theta4;
double xxy = x*x*y*s/theta3 + 2*cm*x*x*y/theta4;
double xxz = x*x*z*s/theta3 + 2*cm*x*x*z/theta4;
double xyy = x*y*y*s/theta3 + 2*cm*x*y*y/theta4;
double xyz = x*y*z*s/theta3 + 2*cm*x*y*z/theta4;
double xzz = x*z*z*s/theta3 + 2*cm*x*z*z/theta4;
double yyy = y*y*y*s/theta3 + 2*cm*y*y*y/theta4;
double yyz = y*y*z*s/theta3 + 2*cm*y*y*z/theta4;
double yzz = y*z*z*s/theta3 + 2*cm*y*z*z/theta4;
double zzz = z*z*z*s/theta3 + 2*cm*z*z*z/theta4;
Rx.data[0] = xxx - x*s/theta - 2*cm*x/theta2;
Rx.data[1] = xxy - x*z*c/theta2 + x*z*s/theta3 - cm*y/theta2;
Rx.data[2] = xxz + x*y*c/theta2 - x*y*s/theta3 - cm*z/theta2;
Rx.data[3] = xxy + x*z*c/theta2 - x*z*s/theta3 - cm*y/theta2;
Rx.data[4] = xyy - x*s/theta;
Rx.data[5] = xyz - x*x*c/theta2 + x*x*s/theta3 - s/theta;
Rx.data[6] = xxz - x*y*c/theta2 + x*y*s/theta3 - cm*z/theta2;
Rx.data[7] = xyz + x*x*c/theta2 - x*x*s/theta3 + s/theta;
Rx.data[8] = xzz - x*s/theta;
Ry.data[0] = xxy - y*s/theta;
Ry.data[1] = xyy - y*z*c/theta2 + y*z*s/theta3 - cm*x/theta2;
Ry.data[2] = xyz + y*y*c/theta2 - y*y*s/theta3 + s/theta;
Ry.data[3] = xyy + y*z*c/theta2 - y*z*s/theta3 - cm*x/theta2;
Ry.data[4] = yyy - y*s/theta - 2*cm*y/theta2;
Ry.data[5] = yyz - x*y*c/theta2 + x*y*s/theta3 - cm*z/theta2;
Ry.data[6] = xyz - y*y*c/theta2 + y*y*s/theta3 - s/theta;
Ry.data[7] = yyz + x*y*c/theta2 - x*y*s/theta3 - cm*z/theta2;
Ry.data[8] = yzz - y*s/theta;
Rz.data[0] = xxz - z*s/theta;
Rz.data[1] = xyz - z*z*c/theta2 + z*z*s/theta3 - s/theta;
Rz.data[2] = xzz + y*z*c/theta2 - y*z*s/theta3 - cm*x/theta2;
Rz.data[3] = xyz + z*z*c/theta2 - z*z*s/theta3 + s/theta;
Rz.data[4] = yyz - z*s/theta;
Rz.data[5] = yzz - x*z*c/theta2 + x*z*s/theta3 - cm*y/theta2;
Rz.data[6] = xzz - y*z*c/theta2 + y*z*s/theta3 - cm*x/theta2;
Rz.data[7] = yzz + x*z*c/theta2 - x*z*s/theta3 - cm*y/theta2;
Rz.data[8] = zzz - z*s/theta - 2*cm*z/theta2;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy