All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.f.FundamentalToProjective Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.f;

import boofcv.alg.geo.impl.ProjectiveToIdentity;
import boofcv.misc.ConfigConverge;
import georegression.geometry.GeometryMath_F64;
import georegression.struct.point.Point3D_F64;
import georegression.struct.point.Vector3D_F64;
import georegression.struct.point.Vector4D_F64;
import org.ddogleg.optimization.FactoryOptimization;
import org.ddogleg.optimization.UnconstrainedLeastSquares;
import org.ddogleg.optimization.derivative.NumericalJacobianForward_DDRM;
import org.ddogleg.optimization.functions.FunctionNtoM;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.NormOps_DDRM;

/**
 * Computes projective camera matrices from a fundamental matrix. All work space is predeclared and won't thrash
 * the garbage collector.
 *
 * @author Peter Abeles
 */
public class FundamentalToProjective {

	private DMatrixRMaj outer = new DMatrixRMaj(3,3);
	private DMatrixRMaj KR = new DMatrixRMaj(3,3);

	FundamentalExtractEpipoles alg = new FundamentalExtractEpipoles();
	Point3D_F64 e1 = new Point3D_F64();
	Point3D_F64 e2 = new Point3D_F64();

	Vector3D_F64 zero = new Vector3D_F64();

	// used to convert P*H = [I|0]
	ProjectiveToIdentity p2i = new ProjectiveToIdentity();

	ConfigConverge convergence = new ConfigConverge(1e-8,1e-8,25);
	UnconstrainedLeastSquares optimizer = FactoryOptimization.levenbergMarquardt(null,true);
	FundamentalResidual residual = new FundamentalResidual();
	NumericalJacobianForward_DDRM jacobian = new NumericalJacobianForward_DDRM(residual);
	private double[] initialV = new double[3];

	/**
	 * 

* Given a fundamental matrix a pair of camera matrices P0 and P1 can be extracted. Same * {@link #twoView(DMatrixRMaj, DMatrixRMaj)} but with the suggested values for all variables filled in for you. *

* @param F (Input) Fundamental Matrix * @param cameraMatrix (Output) resulting projective camera matrix P'. (3 by 4) Known up to a projective transform. */ public void twoView(DMatrixRMaj F , DMatrixRMaj cameraMatrix) { alg.process(F,e1,e2); twoView(F, e2, zero, 1,cameraMatrix); } /** *

* Given a fundamental matrix a pair of camera matrices P and P1' are extracted. The camera matrices * are 3 by 4 and used to project a 3D homogenous point onto the image plane. These camera matrices will only * be known up to a projective transform, thus there are multiple solutions, The canonical camera * matrix is defined as:
*

	 * P=[I|0] and P'= [M|-M*t] = [[e']*F + e'*v^t | lambda*e']
	 * 
* where e' is the epipole FTe' = 0, [e'] is the cross product matrix for the enclosed vector, * v is an arbitrary 3-vector and lambda is a non-zero scalar. *

* *

* NOTE: Additional information is needed to upgrade this projective transform into a metric transform. *

*

* Page 256 in R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003 *

* * @param F (Input) A fundamental matrix * @param e2 (Input) Left epipole of fundamental matrix, FT*e2 = 0. * @param v (Input) Arbitrary 3-vector. Just pick some value, say (0,0,0). * @param lambda (Input) A non zero scalar. Try one. * @param cameraMatrix (Output) resulting projective camera matrix P'. (3 by 4) Known up to a projective transform. */ public void twoView(DMatrixRMaj F , Point3D_F64 e2, Vector3D_F64 v , double lambda , DMatrixRMaj cameraMatrix ) { GeometryMath_F64.outerProd(e2,v,outer); GeometryMath_F64.multCrossA(e2, F, KR); CommonOps_DDRM.add(KR, outer, KR); CommonOps_DDRM.insert(KR,cameraMatrix,0,0); cameraMatrix.set(0,3,lambda*e2.x); cameraMatrix.set(1,3,lambda*e2.y); cameraMatrix.set(2,3,lambda*e2.z); } /** *

* Given three fundamental matrices describing the relationship between three views, compute a consistent * set of projective camera matrices. Consistent means that the camera matrices will give back the same * fundamental matrices. Non-linear refinement might be needed to get an optimal solution. *

* * The first camera matrix, without loss of generality, P1 = [I|0]. * * NOTE: HZ does not recommend using this function because the optimal solution is not geometric and prone * to errors. Instead it recommends use of trifocal tensor to find a set of camera matrices. When testing * the function it was noted that the geometry had to be carefully selected to ensure stability. Hinting that * it might not be the most practical algorithm in real data. * *
    *
  1. Page 301 in Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, "An Invitation to 3-D Vision" * Springer-Verlad, 2004
  2. *
  3. Page 386 and 255 in R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003
  4. *
* * @param F21 (Input) Fundamental matrix between view 1 and 2 * @param F31 (Input) Fundamental matrix between view 1 and 3 * @param F32 (Input) Fundamental matrix between view 2 and 3 * @param P2 (Output) Camera matrix for view 2 * @param P3 (Output) Camera matrix for view 3 */ public boolean threeView(DMatrixRMaj F21 , DMatrixRMaj F31 , DMatrixRMaj F32 , DMatrixRMaj P2 , DMatrixRMaj P3) { // left epipoles. renamed to make code easier to read Point3D_F64 e21 = e1; Point3D_F64 e31 = e2; alg.process(F21,null,e21); twoView(F21,e21,zero,1,P2); alg.process(F31,null,e31); // find transform which will make P2 = [I|0] if( !p2i.process(P2) ) return false; // Perform non-linear optimization to find the parameters for u and minimize the difference residual.setF31(F31,e31); residual.setF32(F32); residual.setH(p2i.getPseudoInvP(),p2i.getU()); // optimizer.setVerbose(System.out,0); optimizer.setFunction(residual,jacobian); optimizer.initialize(initialV,convergence.ftol,convergence.gtol); for (int i = 0; i < convergence.maxIterations; i++) { if( optimizer.iterate()) break; } P3.set(residual.computeP3(optimizer.getParameters())); // // used to sanity check the found solution // double err[] = new double[9]; // residual.process(optimizer.getParameters(),err); // residual.F32.print(); // residual.F32_est.print(); return true; } public double getThreeViewError() { return optimizer.getFunctionValue(); } public ConfigConverge getConvergence() { return convergence; } /** * Residual function used to minimize the difference between two versions of the F32 fundamental matrix. * One version is computed from F21 and F31. The other version was provided by the user. */ class FundamentalResidual implements FunctionNtoM { // Input F32 DMatrixRMaj F32 = new DMatrixRMaj(3,3); // Computed F32 DMatrixRMaj F32_est = new DMatrixRMaj(3,3); // computed P3 DMatrixRMaj P3 = new DMatrixRMaj(3,4); // H = [P2inv | u ]; P2*H = [I|0] DMatrixRMaj P2inv; //pseudo inverse Vector4D_F64 u = new Vector4D_F64(); // input fundamental matrix F31 DMatrixRMaj F31; // epipole from F31 Point3D_F64 T31; // Storage for decomposition of P3 DMatrixRMaj R = new DMatrixRMaj(3,3); Vector3D_F64 a = new Vector3D_F64(); // work space for input parameters Vector3D_F64 v = new Vector3D_F64(); @Override public void process(double[] input, double[] output) { // given the current value of v, compute P3 // P3 = [cross(T31)'*F31 + T31*v' | T31 ] computeP3(input); // [R,T] = [P3*P2 | P3*u] CommonOps_DDRM.mult(P3, P2inv, R); GeometryMath_F64.mult(P3, u,a); // Compute the new fundamental matrix GeometryMath_F64.multCrossA(a, R, F32_est); // TODO sign ambuguity? // Put into a common scale so that it can be compared against F32 double n = NormOps_DDRM.normF(F32_est); CommonOps_DDRM.scale(1.0/n,F32_est); for (int i = 0; i < 9; i++) { output[i] = F32_est.data[i] - F32.data[i]; } } @Override public int getNumOfInputsN() { return 3; } @Override public int getNumOfOutputsM() { return 9; } public DMatrixRMaj computeP3( double input[] ) { v.x = input[0]; v.y = input[1]; v.z = input[2]; FundamentalToProjective.this.twoView(F31,T31, v,1,P3); return P3; } public void setF31(DMatrixRMaj F31, Point3D_F64 T31) { this.F31 = F31; this.T31 = T31; } public void setF32(DMatrixRMaj F32) { this.F32.set(F32); double n = NormOps_DDRM.normF(this.F32); CommonOps_DDRM.scale(1.0/n,this.F32); } /** * H = [P2inv | u ] */ public void setH(DMatrixRMaj P2inv , DMatrixRMaj u) { this.P2inv = P2inv; this.u.x = u.data[0]; this.u.y = u.data[1]; this.u.z = u.data[2]; this.u.w = u.data[3]; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy