All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.pose.P3PGrunert Maven / Gradle / Ivy

/*
 * Copyright (c) 2011-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.pose;

import georegression.struct.point.Point2D_F64;
import org.ddogleg.solver.Polynomial;
import org.ddogleg.solver.PolynomialRoots;
import org.ddogleg.struct.FastQueue;
import org.ejml.data.Complex_F64;

import java.util.List;

/**
 * 

* Solves for the 3 unknown distances between camera center and 3 observed points by finding the roots of a 4th order * polynomial, This is probably the first solution to the P3P problem and first proposed in 1841 by Grunert. This * implementation is based off the discussion in [1]. There are up to four solutions. *

* *

See {@link P3PLineDistance} for a more detailed problem description.

* *

* [1] Haralick, Robert M. and Lee, Chung-Nan and Ottenberg, Karsten and Nolle, Michael, "Review and analysis of * solutions of the three point perspective pose estimation problem" Int. J. Comput. Vision, 1994 vol 13, no. 13, * pages 331-356 *

* * @author Peter Abeles */ public class P3PGrunert implements P3PLineDistance { // used to solve the 4th order polynomial private PolynomialRoots rootFinder; // polynomial which is to be solved private Polynomial poly = new Polynomial(5); // storage for solutions private FastQueue solutions = new FastQueue<>(4, PointDistance3.class, true); /** * Specifies the polynomial root finder. * * @param rootFinder Root finder for real 4th order roots. */ public P3PGrunert(PolynomialRoots rootFinder) { this.rootFinder = rootFinder; } /** * @inheritDoc */ @Override public boolean process( Point2D_F64 obs1 , Point2D_F64 obs2, Point2D_F64 obs3, double length23 , double length13 , double length12 ) { double cos12 = computeCosine(obs1,obs2); double cos13 = computeCosine(obs1,obs3); double cos23 = computeCosine(obs2,obs3); double a = length23, b = length13, c = length12; // divide out numbers before multiplying them. less overflow/underflow that way double a2_div_b2 = (a/b)*(a/b); double c2_div_b2 = (c/b)*(c/b); double a2_m_c2_div_b2 = a2_div_b2 - c2_div_b2; double a2_p_c2_div_b2 = a2_div_b2 + c2_div_b2; poly.c[0] = -4*a2_div_b2*pow2(cos12) + pow2(a2_m_c2_div_b2 + 1); poly.c[1] = 4*(-a2_m_c2_div_b2*(1 + a2_m_c2_div_b2)*cos13 + 2*a2_div_b2*pow2(cos12)*cos13 - (1-a2_p_c2_div_b2)*cos23*cos12); poly.c[2] = 2*(pow2(a2_m_c2_div_b2) - 1 + 2*pow2(a2_m_c2_div_b2)*pow2(cos13) + 2*(1-c2_div_b2)*pow2(cos23) - 4*a2_p_c2_div_b2*cos12*cos13*cos23 + 2*(1-a2_div_b2)*pow2(cos12)); poly.c[3] = 4*(a2_m_c2_div_b2*(1-a2_m_c2_div_b2)*cos13 - (1 - a2_p_c2_div_b2)*cos23*cos12 + 2*c2_div_b2*pow2(cos23)*cos13); poly.c[4] = -4*c2_div_b2*cos23*cos23 + pow2(a2_m_c2_div_b2 - 1); // solve for real roots solutions.reset(); if( !rootFinder.process(poly) ) return false; List roots = rootFinder.getRoots(); for( Complex_F64 r : roots ) { if( !r.isReal() ) { continue; } double v = r.real; double u = ((-1 + a2_div_b2 - c2_div_b2)*v*v - 2*(a2_div_b2 - c2_div_b2)*cos13*v + 1 + a2_div_b2 - c2_div_b2)/ (2*(cos12 - v*cos23)); // compute the distance of each point PointDistance3 s = solutions.grow(); s.dist1 = Math.sqrt(a*a/(u*u + v*v - 2*u*v*cos23)); s.dist2 = s.dist1*u; s.dist3 = s.dist1*v; } return solutions.size() != 0; } public static double pow2( double a ) { return a*a; } public static double computeCosine( Point2D_F64 a , Point2D_F64 b ) { double top = a.x*b.x + a.y*b.y + 1; double bottom = Math.sqrt(a.x*a.x + a.y*a.y + 1) * Math.sqrt(b.x*b.x + b.y*b.y + 1); return top/bottom; } /** * @inheritDoc */ @Override public FastQueue getSolutions() { return solutions; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy