boofcv.alg.geo.pose.PnPLepetitEPnP Maven / Gradle / Ivy
Show all versions of boofcv-geo Show documentation
/*
* Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.geo.pose;
import georegression.fitting.MotionTransformPoint;
import georegression.fitting.se.FitSpecialEuclideanOps_F64;
import georegression.geometry.UtilPoint3D_F64;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point3D_F64;
import georegression.struct.se.Se3_F64;
import org.ddogleg.struct.FastQueue;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.SingularOps_DDRM;
import org.ejml.dense.row.factory.DecompositionFactory_DDRM;
import org.ejml.dense.row.factory.LinearSolverFactory_DDRM;
import org.ejml.dense.row.linsol.svd.SolveNullSpaceSvd_DDRM;
import org.ejml.dense.row.mult.MatrixVectorMult_DDRM;
import org.ejml.interfaces.SolveNullSpace;
import org.ejml.interfaces.decomposition.SingularValueDecomposition_F64;
import org.ejml.interfaces.linsol.LinearSolverDense;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/**
*
* Implementation of the EPnP algorithm from [1] for solving the PnP problem when N ≥ 5 for the general case
* and N ≥ 4 for planar data (see note below). Given a calibrated camera, n pairs of 2D point observations and the known 3D
* world coordinates, it solves the for camera's pose.. This solution is non-iterative and claims to be much
* faster and more accurate than the alternatives. Works for both planar and non-planar configurations.
*
*
*
* Expresses the N 3D point as a weighted sum of four virtual control points. Problem then becomes to estimate
* the coordinates of the control points in the camera referential, which can be done in O(n) time.
*
*
*
* After estimating the control points the solution can be refined using Gauss Newton non-linear
* optimization. The objective function being optimizes
* reduces the difference between world and camera control point distances by adjusting
* the values of beta. Optimization is very fast, but can degrade accuracy if over optimized.
* See warning below. To turn on non-linear optimization set {@link #setNumIterations(int)} to
* a positive number.
*
*
*
* After experimentation there doesn't seem to be any universally best way to choose the control
* point distribution. To allow tuning for specific problems the 'magic number' has been provided.
* Larger values increase the control point distribution's size. In general smaller numbers appear
* to be better for noisier data, but can degrade results if too small.
*
*
*
* MINIMUM POINTS: According to the original paper [1] only 4 points are needed for the general case.
* In practice it produces very poor results on average. The matlab code provided by the original author
* also exhibits instability in the minimum case. The article also does not show results for the minimum
* case, making it hard to judge what should be expected. However, I'm not ruling out there being a bug
* in relinearization. See that code for comments. Correspondence with the original author indicates that
* he did not expect results from relinearization to be as accurate as the other cases.
*
*
*
* NOTES: This implementation deviates in some minor ways from what was described in the paper. However, their
* own example code (Matlab and C++) are mutually different in significant ways too. See how solutions are scored,
* linear systems are solved, and how world control points are computed. How control points are computed here
* is inspired from their C++ example (technique used in their matlab example has some stability issues), but
* there is probably room for more improvement.
*
*
*
* WARNING: Setting the number of optimization iterations too high can actually degrade accuracy. The
* objective function being minimized is not observation residuals. Locally it appears
* to be a good approximation, but can diverge and actually produce worse results. Because
* of this behavior, more advanced optimization routines are unnecessary and counter productive.
*
*
*
* [1] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua, "EPnP: An Accurate O(n) Solution to the PnP Problem"
* Int. J. Comput. Visionm, vol 81, issue 2, 2009
*
*
* @author Peter Abeles
*/
// TODO change so that it returns a list of N solutions and let other algorithm select the best? Re-read the paper
public class PnPLepetitEPnP {
// used to solve various linear problems
private SolveNullSpace solverNull = new SolveNullSpaceSvd_DDRM();
DMatrixRMaj nullspace = new DMatrixRMaj(1,1);
private SingularValueDecomposition_F64 svd = DecompositionFactory_DDRM.svd(12, 12, false, true, false);
private LinearSolverDense solver = LinearSolverFactory_DDRM.leastSquares(6, 4);
private LinearSolverDense solverPinv = LinearSolverFactory_DDRM.pseudoInverse(true);
// weighting factor to go from control point into world coordinate
protected DMatrixRMaj alphas = new DMatrixRMaj(1,1);
private DMatrixRMaj M = new DMatrixRMaj(12,12);
private DMatrixRMaj MM = new DMatrixRMaj(12,12);
// linear constraint matrix
protected DMatrixRMaj L_full = new DMatrixRMaj(6,10);
private DMatrixRMaj L = new DMatrixRMaj(6,6);
// distance of world control points from each other
protected DMatrixRMaj y = new DMatrixRMaj(6,1);
// solution for betas
private DMatrixRMaj x = new DMatrixRMaj(6,1);
// how many controls points 4 for general case and 3 for planar
protected int numControl;
// control points extracted from the null space of M'M
protected List nullPts[] = new ArrayList[4];
// control points in world coordinate frame
protected FastQueue controlWorldPts = new FastQueue<>(4, Point3D_F64.class, true);
// list of found solutions
private List solutions = new ArrayList<>();
protected FastQueue solutionPts = new FastQueue<>(4, Point3D_F64.class, true);
// estimates rigid body motion between two associated sets of points
private MotionTransformPoint motionFit = FitSpecialEuclideanOps_F64.fitPoints3D();
// mean location of world points
private Point3D_F64 meanWorldPts = new Point3D_F64();
// number of iterations it will perform
private int numIterations;
// adjusts world control point distribution
private double magicNumber;
// handles the hard case #4
Relinearlize relinearizeBeta = new Relinearlize();
// declaring data for local use inside a function
// in general its good to avoid declaring and destroying massive amounts of data in Java
// this is probably going too far though
private List tempPts0 = new ArrayList<>(); // 4 points stored in it
DMatrixRMaj A_temp = new DMatrixRMaj(1,1);
DMatrixRMaj v_temp = new DMatrixRMaj(3,1);
DMatrixRMaj w_temp = new DMatrixRMaj(1,1);
/**
* Constructor which uses the default magic number
*/
public PnPLepetitEPnP() {
this(0.1);
}
/**
* Constructor which allows configuration of the magic number.
*
* @param magicNumber Magic number changes distribution of world control points.
* Values less than one seem to work best. Try 0.1
*/
public PnPLepetitEPnP( double magicNumber ) {
this.magicNumber = magicNumber;
// just a sanity check
if( motionFit.getMinimumPoints() > 4 )
throw new IllegalArgumentException("Crap");
for( int i = 0; i < 4; i++ ) {
tempPts0.add( new Point3D_F64());
nullPts[i] = new ArrayList<>();
solutions.add( new double[4]);
for( int j = 0; j < 4; j++ ) {
nullPts[i].add( new Point3D_F64());
}
}
}
/**
* Used to turn on and off non-linear optimization. To turn on set to a positive number.
* See warning in class description about setting the number of iterations too high.
*
* @param numIterations Number of iterations. Try 10.
*/
public void setNumIterations(int numIterations) {
this.numIterations = numIterations;
}
/**
* Compute camera motion given a set of features with observations and 3D locations
*
* @param worldPts Known location of features in 3D world coordinates
* @param observed Observed location of features in normalized camera coordinates
* @param solutionModel Output: Storage for the found solution.
*/
public void process( List worldPts , List observed , Se3_F64 solutionModel )
{
if( worldPts.size() < 4 )
throw new IllegalArgumentException("Must provide at least 4 points");
if( worldPts.size() != observed.size() )
throw new IllegalArgumentException("Must have the same number of observations and world points");
// select world control points using the points statistics
selectWorldControlPoints(worldPts, controlWorldPts);
// compute barycentric coordinates for the world control points
computeBarycentricCoordinates(controlWorldPts, alphas, worldPts );
// create the linear system whose null space will contain the camera control points
constructM(observed, alphas, M);
// the camera points are a linear combination of these null points
extractNullPoints(M);
// compute the full constraint matrix, the others are extracted from this
if( numControl == 4 ) {
L_full.reshape(6, 10);
y.reshape(6,1);
UtilLepetitEPnP.constraintMatrix6x10(L_full,y,controlWorldPts,nullPts);
// compute 4 solutions using the null points
estimateCase1(solutions.get(0));
estimateCase2(solutions.get(1));
estimateCase3(solutions.get(2));
// results are bad in general, so skip unless needed
// always considering this case seems to hurt runtime speed a little bit
if( worldPts.size() == 4 )
estimateCase4(solutions.get(3));
} else {
L_full.reshape(3, 6);
y.reshape(3,1);
UtilLepetitEPnP.constraintMatrix3x6(L_full, y, controlWorldPts, nullPts);
estimateCase1(solutions.get(0));
estimateCase2(solutions.get(1));
if( worldPts.size() == 3 )
estimateCase3_planar(solutions.get(2));
}
computeResultFromBest(solutionModel);
}
/**
* Selects the best motion hypothesis based on the actual observations and optionally
* optimizes the solution.
*/
private void computeResultFromBest( Se3_F64 solutionModel ) {
double bestScore = Double.MAX_VALUE;
int bestSolution=-1;
for( int i = 0; i < numControl; i++ ) {
double score = score(solutions.get(i));
if( score < bestScore ) {
bestScore = score;
bestSolution = i;
}
// System.out.println(i+" score "+score);
}
double []solution = solutions.get(bestSolution);
if( numIterations > 0 ) {
gaussNewton(solution);
}
UtilLepetitEPnP.computeCameraControl(solution,nullPts,solutionPts,numControl);
motionFit.process(controlWorldPts.toList(), solutionPts.toList());
solutionModel.set(motionFit.getTransformSrcToDst());
}
/**
* Score a solution based on distance between control points. Closer the camera
* control points are from the world control points the better the score. This is
* similar to how optimization score works and not the way recommended in the original
* paper.
*/
private double score(double betas[]) {
UtilLepetitEPnP.computeCameraControl(betas,nullPts, solutionPts,numControl);
int index = 0;
double score = 0;
for( int i = 0; i < numControl; i++ ) {
Point3D_F64 si = solutionPts.get(i);
Point3D_F64 wi = controlWorldPts.get(i);
for( int j = i+1; j < numControl; j++ , index++) {
double ds = si.distance(solutionPts.get(j));
double dw = wi.distance(controlWorldPts.get(j));
score += (ds-dw)*(ds-dw);
}
}
return score;
}
/**
* Selects control points along the data's axis and the data's centroid. If the data is determined
* to be planar then only 3 control points are selected.
*
* The data's axis is determined by computing the covariance matrix then performing SVD. The axis
* is contained along the
*/
public void selectWorldControlPoints(List worldPts, FastQueue controlWorldPts) {
UtilPoint3D_F64.mean(worldPts,meanWorldPts);
// covariance matrix elements, summed up here for speed
double c11=0,c12=0,c13=0,c22=0,c23=0,c33=0;
final int N = worldPts.size();
for( int i = 0; i < N; i++ ) {
Point3D_F64 p = worldPts.get(i);
double dx = p.x- meanWorldPts.x;
double dy = p.y- meanWorldPts.y;
double dz = p.z- meanWorldPts.z;
c11 += dx*dx;c12 += dx*dy;c13 += dx*dz;
c22 += dy*dy;c23 += dy*dz;
c33 += dz*dz;
}
c11/=N;c12/=N;c13/=N;c22/=N;c23/=N;c33/=N;
DMatrixRMaj covar = new DMatrixRMaj(3,3,true,c11,c12,c13,c12,c22,c23,c13,c23,c33);
// find the data's orientation and check to see if it is planar
svd.decompose(covar);
double []singularValues = svd.getSingularValues();
DMatrixRMaj V = svd.getV(null,false);
SingularOps_DDRM.descendingOrder(null,false,singularValues,3,V,false);
// planar check
if( singularValues[0]
* Given the control points it computes the 4 weights for each camera point. This is done by
* solving the following linear equation: C*α=X. where C is the control point matrix,
* α is the 4 by n matrix containing the solution, and X is the camera point matrix.
* N is the number of points.
*
*
* C = [ controlPts' ; ones(1,4) ]
* X = [ cameraPts' ; ones(1,N) ]
*
*/
protected void computeBarycentricCoordinates(FastQueue controlWorldPts,
DMatrixRMaj alphas,
List worldPts )
{
alphas.reshape(worldPts.size(),numControl,false);
v_temp.reshape(3,1);
A_temp.reshape(3, numControl - 1);
for( int i = 0; i < numControl-1; i++ ) {
Point3D_F64 c = controlWorldPts.get(i);
A_temp.set(0, i, c.x - meanWorldPts.x);
A_temp.set(1, i, c.y - meanWorldPts.y);
A_temp.set(2, i, c.z - meanWorldPts.z);
}
// invert the matrix
solverPinv.setA(A_temp);
A_temp.reshape(A_temp.numCols, A_temp.numRows);
solverPinv.invert(A_temp);
w_temp.reshape(numControl - 1, 1);
for( int i = 0; i < worldPts.size(); i++ ) {
Point3D_F64 p = worldPts.get(i);
v_temp.data[0] = p.x- meanWorldPts.x;
v_temp.data[1] = p.y- meanWorldPts.y;
v_temp.data[2] = p.z- meanWorldPts.z;
MatrixVectorMult_DDRM.mult(A_temp, v_temp, w_temp);
int rowIndex = alphas.numCols*i;
for( int j = 0; j < numControl-1; j++ )
alphas.data[rowIndex++] = w_temp.data[j];
if( numControl == 4 )
alphas.data[rowIndex] = 1 - w_temp.data[0] - w_temp.data[1] - w_temp.data[2];
else
alphas.data[rowIndex] = 1 - w_temp.data[0] - w_temp.data[1];
}
}
/**
* Constructs the linear system which is to be solved.
*
* sum a_ij*x_j - a_ij*u_i*z_j = 0
* sum a_ij*y_j - a_ij*v_i*z_j = 0
*
* where (x,y,z) is the control point to be solved for.
* (u,v) is the observed normalized point
*
*/
protected static void constructM(List obsPts,
DMatrixRMaj alphas, DMatrixRMaj M)
{
int N = obsPts.size();
M.reshape(3*alphas.numCols,2*N,false);
for( int i = 0; i < N; i++ ) {
Point2D_F64 p2 = obsPts.get(i);
int row = i*2;
for( int j = 0; j < alphas.numCols; j++ ) {
int col = j*3;
double alpha = alphas.unsafe_get(i, j);
M.unsafe_set(col, row, alpha);
M.unsafe_set(col + 1, row, 0);
M.unsafe_set(col + 2, row, -alpha * p2.x);
M.unsafe_set(col , row + 1, 0);
M.unsafe_set(col + 1, row + 1, alpha);
M.unsafe_set(col + 2, row + 1, -alpha * p2.y);
}
}
}
/**
* Computes M'*M and finds the null space. The 4 eigenvectors with the smallest eigenvalues are found
* and the null points extracted from them.
*/
protected void extractNullPoints( DMatrixRMaj M )
{
// compute MM and find its null space
MM.reshape(M.numRows,M.numRows,false);
CommonOps_DDRM.multTransB(M, M, MM);
if( !solverNull.process(MM,numControl, nullspace))
throw new IllegalArgumentException("SVD failed?!?!");
// extract null points from the null space
for( int i = 0; i < numControl; i++ ) {
int column = numControl-i-1;
for( int j = 0; j < numControl; j++ ) {
Point3D_F64 p = nullPts[i].get(j);
p.x = nullspace.get(j*3+0,column);
p.y = nullspace.get(j*3+1,column);
p.z = nullspace.get(j*3+2,column);
}
}
}
/**
* Examines the distance each point is from the centroid to determine the scaling difference
* between world control points and the null points.
*/
protected double matchScale( List nullPts ,
FastQueue controlWorldPts ) {
Point3D_F64 meanNull = UtilPoint3D_F64.mean(nullPts,numControl,null);
Point3D_F64 meanWorld = UtilPoint3D_F64.mean(controlWorldPts.toList(),numControl,null);
// compute the ratio of distance between world and null points from the centroid
double top = 0;
double bottom = 0;
for( int i = 0; i < numControl; i++ ) {
Point3D_F64 wi = controlWorldPts.get(i);
Point3D_F64 ni = nullPts.get(i);
double dwx = wi.x-meanWorld.x;
double dwy = wi.y-meanWorld.y;
double dwz = wi.z-meanWorld.z;
double dnx = ni.x-meanNull.x;
double dny = ni.y-meanNull.y;
double dnz = ni.z-meanNull.z;
double n2 = dnx*dnx + dny*dny + dnz*dnz;
double w2 = dwx*dwx + dwy*dwy + dwz*dwz;
top += w2;
bottom += n2;
}
// compute beta
return Math.sqrt(top/bottom);
}
/**
* Use the positive depth constraint to determine the sign of beta
*/
private double adjustBetaSign( double beta , List nullPts ) {
if( beta == 0 )
return 0;
int N = alphas.numRows;
int positiveCount = 0;
for( int i = 0; i < N; i++ ) {
double z = 0;
for( int j = 0; j < numControl; j++ ) {
Point3D_F64 c = nullPts.get(j);
z += alphas.get(i,j)*c.z;
}
if( z > 0 )
positiveCount++;
}
if( positiveCount < N/2 )
beta *= -1;
return beta;
}
/**
* Given the set of betas it computes a new set of control points and adjust sthe scale
* using the {@llin #matchScale} function.
*/
private void refine( double betas[] ) {
for( int i = 0; i < numControl; i++ ) {
double x=0,y=0,z=0;
for( int j = 0; j < numControl; j++ ) {
Point3D_F64 p = nullPts[j].get(i);
x += betas[j]*p.x;
y += betas[j]*p.y;
z += betas[j]*p.z;
}
tempPts0.get(i).set(x,y,z);
}
double adj = matchScale(tempPts0,controlWorldPts);
adj = adjustBetaSign(adj,tempPts0);
for( int i = 0; i < 4; i++ ) {
betas[i] *= adj;
}
}
/**
* Simple analytical solution. Just need to solve for the scale difference in one set
* of potential control points.
*/
protected void estimateCase1( double betas[] ) {
betas[0] = matchScale(nullPts[0], controlWorldPts);
betas[0] = adjustBetaSign(betas[0],nullPts[0]);
betas[1] = 0; betas[2] = 0; betas[3] = 0;
}
protected void estimateCase2( double betas[] ) {
x.reshape(3,1,false);
if( numControl == 4 ) {
L.reshape(6,3,false);
UtilLepetitEPnP.constraintMatrix6x3(L_full,L);
} else {
L.reshape(3,3,false);
UtilLepetitEPnP.constraintMatrix3x3(L_full,L);
}
if( !solver.setA(L) )
throw new RuntimeException("Oh crap");
solver.solve(y,x);
betas[0] = Math.sqrt(Math.abs(x.get(0)));
betas[1] = Math.sqrt(Math.abs(x.get(2)));
betas[1] *= Math.signum(x.get(0))*Math.signum(x.get(1));
betas[2] = 0; betas[3] = 0;
refine(betas);
}
protected void estimateCase3( double betas[] ) {
Arrays.fill(betas, 0);
x.reshape(6,1,false);
L.reshape(6,6,false);
UtilLepetitEPnP.constraintMatrix6x6(L_full, L);
if( !solver.setA(L) )
throw new RuntimeException("Oh crap");
solver.solve(y,x);
betas[0] = Math.sqrt(Math.abs(x.get(0)));
betas[1] = Math.sqrt(Math.abs(x.get(3)));
betas[2] = Math.sqrt(Math.abs(x.get(5)));
betas[1] *= Math.signum(x.get(0))*Math.signum(x.get(1));
betas[2] *= Math.signum(x.get(0))*Math.signum(x.get(2));
betas[3] = 0;
refine(betas);
}
/**
* If the data is planar use relinearize to estimate betas
*/
protected void estimateCase3_planar( double betas[] ) {
relinearizeBeta.setNumberControl(3);
relinearizeBeta.process(L_full,y,betas);
refine(betas);
}
protected void estimateCase4( double betas[] ) {
relinearizeBeta.setNumberControl(4);
relinearizeBeta.process(L_full,y,betas);
refine(betas);
}
/**
* Optimize beta values using Gauss Newton.
*
* @param betas Beta values being optimized.
*/
private void gaussNewton( double betas[] ) {
A_temp.reshape(L_full.numRows, numControl);
v_temp.reshape(L_full.numRows, 1);
x.reshape(numControl,1,false);
// don't check numControl inside in hope that the JVM can optimize the code better
if( numControl == 4 ) {
for( int i = 0; i < numIterations; i++ ) {
UtilLepetitEPnP.jacobian_Control4(L_full,betas, A_temp);
UtilLepetitEPnP.residuals_Control4(L_full,y,betas,v_temp.data);
if( !solver.setA(A_temp) )
return;
solver.solve(v_temp,x);
for( int j = 0; j < numControl; j++ ) {
betas[j] -= x.data[j];
}
}
} else {
for( int i = 0; i < numIterations; i++ ) {
UtilLepetitEPnP.jacobian_Control3(L_full,betas, A_temp);
UtilLepetitEPnP.residuals_Control3(L_full,y,betas,v_temp.data);
if( !solver.setA(A_temp) )
return;
solver.solve(v_temp,x);
for( int j = 0; j < numControl; j++ ) {
betas[j] -= x.data[j];
}
}
}
}
/**
* Returns the minimum number of points required to make an estimate. Technically
* it is 4 for general and 3 for planar. The minimum number of point cases
* seem to be a bit unstable in some situations. minimum + 1 or more is stable.
*
* @return minimum number of points
*/
public int getMinPoints () {
return 5;
}
}