boofcv.alg.geo.robust.DistanceTrifocalReprojectionSq Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-geo Show documentation
Show all versions of boofcv-geo Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.geo.robust;
import boofcv.abst.geo.TriangulateNViewsProjective;
import boofcv.abst.geo.triangulate.TriangulateRefineProjectiveLS;
import boofcv.alg.geo.trifocal.TrifocalExtractGeometries;
import boofcv.factory.geo.ConfigTriangulation;
import boofcv.factory.geo.FactoryMultiView;
import boofcv.struct.geo.AssociatedTriple;
import boofcv.struct.geo.TrifocalTensor;
import georegression.geometry.GeometryMath_F64;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point4D_F64;
import org.ddogleg.fitting.modelset.DistanceFromModel;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import java.util.ArrayList;
import java.util.List;
/**
* Estimates the accuracy of a trifocal tensor using reprojection error. The camera matrices are extracted from
* the tensor, these are used to triangulate the observation. the found point is then reprojected back to each
* view and the delta computed. Optional non-linear refinement.
*
* @author Peter Abeles
*/
public class DistanceTrifocalReprojectionSq implements DistanceFromModel
{
DMatrixRMaj P1 = CommonOps_DDRM.identity(3,4);
DMatrixRMaj P2 = new DMatrixRMaj(3,4);
DMatrixRMaj P3 = new DMatrixRMaj(3,4);
List cameraMatrices = new ArrayList<>();
List observations = new ArrayList<>();
TrifocalExtractGeometries extractor = new TrifocalExtractGeometries();
TriangulateNViewsProjective triangulator = FactoryMultiView.triangulateNView(ConfigTriangulation.DLT);
TriangulateRefineProjectiveLS refiner;
Point4D_F64 X = new Point4D_F64();
Point2D_F64 pixel = new Point2D_F64();
/**
* Call this constructor if you wish to apply non-linear refinement.
* @param gtol convergence tolerance. Try 1e-8
* @param maxIterations Max iterations. Try 50
*/
public DistanceTrifocalReprojectionSq( double gtol , int maxIterations ) {
this();
refiner = new TriangulateRefineProjectiveLS(gtol,maxIterations);
}
public DistanceTrifocalReprojectionSq() {
cameraMatrices.add(P1);
cameraMatrices.add(P2);
cameraMatrices.add(P3);
observations.add(null);
observations.add(null);
observations.add(null);
}
@Override
public void setModel(TrifocalTensor trifocalTensor) {
extractor.setTensor(trifocalTensor);
extractor.extractCamera(P2, P3);
}
@Override
public double computeDistance(AssociatedTriple pt) {
observations.set(0,pt.p1);
observations.set(1,pt.p2);
observations.set(2,pt.p3);
if( !triangulator.triangulate(observations,cameraMatrices,X) )
return 1e200; // not returning max value out of fear of overflow
if( refiner != null )
refiner.process(observations,cameraMatrices,X,X);
double error = 0;
GeometryMath_F64.mult(P1,X,pixel);
error += pixel.distance2(pt.p1);
GeometryMath_F64.mult(P2,X,pixel);
error += pixel.distance2(pt.p2);
GeometryMath_F64.mult(P3,X,pixel);
error += pixel.distance2(pt.p3);
return error;
}
@Override
public void computeDistance(List observations, double[] distance) {
for (int i = 0; i < observations.size(); i++) {
distance[i] = computeDistance(observations.get(i));
}
}
@Override
public Class getPointType() {
return AssociatedTriple.class;
}
@Override
public Class getModelType() {
return TrifocalTensor.class;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy