boofcv.alg.geo.triangulate.TriangulateMetricLinearDLT Maven / Gradle / Ivy
Show all versions of boofcv-geo Show documentation
/*
* Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.geo.triangulate;
import boofcv.alg.geo.GeometricResult;
import boofcv.alg.geo.NormalizationPoint2D;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point4D_F64;
import georegression.struct.point.Vector3D_F64;
import georegression.struct.se.Se3_F64;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.linsol.svd.SolveNullSpaceSvd_DDRM;
import java.util.Arrays;
import java.util.List;
/**
*
* Triangulates the location of a 3D point given two or more views of the point using the
* Discrete Linear Transform (DLT). Modified to work only with a calibrated camera. The second singular value
* is checked to see if a solution was possible.
*
*
*
* [1] Page 312 in R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003
*
*
* @author Peter Abeles
*/
public class TriangulateMetricLinearDLT {
private SolveNullSpaceSvd_DDRM solverNull = new SolveNullSpaceSvd_DDRM();
private DMatrixRMaj nullspace = new DMatrixRMaj(4,1);
private DMatrixRMaj A = new DMatrixRMaj(4,4);
// used in geometry test
public double singularThreshold = 1;
// used for normalizing pixel coordinates and improving linear solution
NormalizationPoint2D stats = new NormalizationPoint2D();
/**
*
* Given N observations of the same point from two views and a known motion between the
* two views, triangulate the point's position in camera 'b' reference frame.
*
*
* Modification of [1] to be less generic and use calibrated cameras.
*
*
* @param observations Observation in each view in normalized coordinates. Not modified.
* @param worldToView Transformations from world to the view. Not modified.
* @param found (Output) 3D point in homogenous coordinates. Modified.
*/
public GeometricResult triangulate( List observations ,
List worldToView ,
Point4D_F64 found ) {
if( observations.size() != worldToView.size() )
throw new IllegalArgumentException("Number of observations must match the number of motions");
final int N = worldToView.size();
A.reshape(2*N,4,false);
int index = 0;
for( int i = 0; i < N; i++ ) {
index = addView(worldToView.get(i),observations.get(i),index);
}
return finishSolving(found);
}
/**
*
* Given two observations of the same point from two views and a known motion between the
* two views, triangulate the point's position in camera 'b' reference frame.
*
*
* Modification of [1] to be less generic and use calibrated cameras.
*
*
* @param a Observation 'a' in normalized coordinates. Not modified.
* @param b Observation 'b' in normalized coordinates. Not modified.
* @param fromAtoB Transformation from camera view 'a' to 'b' Not modified.
* @param foundInA Output, the found 3D position of the point. Modified.
*/
public GeometricResult triangulate( Point2D_F64 a , Point2D_F64 b ,
Se3_F64 fromAtoB ,
Point4D_F64 foundInA ) {
A.reshape(4, 4);
int index = addView(fromAtoB,b,0);
// third row
A.data[index++] = -1;
A.data[index++] = 0;
A.data[index++] = a.x;
A.data[index++] = 0;
// fourth row
A.data[index++] = 0;
A.data[index++] = -1;
A.data[index++] = a.y;
A.data[index ] = 0;
return finishSolving(foundInA);
}
private GeometricResult finishSolving(Point4D_F64 foundInA) {
if (!solverNull.process(A, 1, nullspace))
return GeometricResult.SOLVE_FAILED;
// if the second smallest singular value is the same size as the smallest there's problem
double sv[] = solverNull.getSingularValues();
Arrays.sort(sv);
if (sv[1] * singularThreshold <= sv[0]) {
return GeometricResult.GEOMETRY_POOR;
}
foundInA.x = nullspace.get(0);
foundInA.y = nullspace.get(1);
foundInA.z = nullspace.get(2);
foundInA.w = nullspace.get(3);
return GeometricResult.SUCCESS;
}
private int addView( Se3_F64 motion , Point2D_F64 a , int index ) {
final double sx = stats.stdX, sy = stats.stdY;
// final double cx = stats.meanX, cy = stats.meanY;
DMatrixRMaj R = motion.getR();
Vector3D_F64 T = motion.getT();
double r11 = R.data[0], r12 = R.data[1], r13 = R.data[2];
double r21 = R.data[3], r22 = R.data[4], r23 = R.data[5];
double r31 = R.data[6], r32 = R.data[7], r33 = R.data[8];
// These rows are derived by applying the scaling matrix to pixels and camera matrix
// more comments are in the projective code
// first row
A.data[index++] = (a.x*r31-r11)/sx;
A.data[index++] = (a.x*r32-r12)/sx;
A.data[index++] = (a.x*r33-r13)/sx;
A.data[index++] = (a.x*T.z-T.x)/sx;
// second row
A.data[index++] = (a.y*r31-r21)/sy;
A.data[index++] = (a.y*r32-r22)/sy;
A.data[index++] = (a.y*r33-r23)/sy;
A.data[index++] = (a.y*T.z-T.y)/sy;
return index;
}
public double getSingularThreshold() {
return singularThreshold;
}
public void setSingularThreshold(double singularThreshold) {
this.singularThreshold = singularThreshold;
}
}