All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.triangulate.TriangulateMetricLinearDLT Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.triangulate;

import boofcv.alg.geo.GeometricResult;
import boofcv.alg.geo.NormalizationPoint2D;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point4D_F64;
import georegression.struct.point.Vector3D_F64;
import georegression.struct.se.Se3_F64;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.linsol.svd.SolveNullSpaceSvd_DDRM;

import java.util.Arrays;
import java.util.List;

/**
 * 

* Triangulates the location of a 3D point given two or more views of the point using the * Discrete Linear Transform (DLT). Modified to work only with a calibrated camera. The second singular value * is checked to see if a solution was possible. *

* *

* [1] Page 312 in R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003 *

* * @author Peter Abeles */ public class TriangulateMetricLinearDLT { private SolveNullSpaceSvd_DDRM solverNull = new SolveNullSpaceSvd_DDRM(); private DMatrixRMaj nullspace = new DMatrixRMaj(4,1); private DMatrixRMaj A = new DMatrixRMaj(4,4); // used in geometry test public double singularThreshold = 1; // used for normalizing pixel coordinates and improving linear solution NormalizationPoint2D stats = new NormalizationPoint2D(); /** *

* Given N observations of the same point from two views and a known motion between the * two views, triangulate the point's position in camera 'b' reference frame. *

*

* Modification of [1] to be less generic and use calibrated cameras. *

* * @param observations Observation in each view in normalized coordinates. Not modified. * @param worldToView Transformations from world to the view. Not modified. * @param found (Output) 3D point in homogenous coordinates. Modified. */ public GeometricResult triangulate( List observations , List worldToView , Point4D_F64 found ) { if( observations.size() != worldToView.size() ) throw new IllegalArgumentException("Number of observations must match the number of motions"); final int N = worldToView.size(); A.reshape(2*N,4,false); int index = 0; for( int i = 0; i < N; i++ ) { index = addView(worldToView.get(i),observations.get(i),index); } return finishSolving(found); } /** *

* Given two observations of the same point from two views and a known motion between the * two views, triangulate the point's position in camera 'b' reference frame. *

*

* Modification of [1] to be less generic and use calibrated cameras. *

* * @param a Observation 'a' in normalized coordinates. Not modified. * @param b Observation 'b' in normalized coordinates. Not modified. * @param fromAtoB Transformation from camera view 'a' to 'b' Not modified. * @param foundInA Output, the found 3D position of the point. Modified. */ public GeometricResult triangulate( Point2D_F64 a , Point2D_F64 b , Se3_F64 fromAtoB , Point4D_F64 foundInA ) { A.reshape(4, 4); int index = addView(fromAtoB,b,0); // third row A.data[index++] = -1; A.data[index++] = 0; A.data[index++] = a.x; A.data[index++] = 0; // fourth row A.data[index++] = 0; A.data[index++] = -1; A.data[index++] = a.y; A.data[index ] = 0; return finishSolving(foundInA); } private GeometricResult finishSolving(Point4D_F64 foundInA) { if (!solverNull.process(A, 1, nullspace)) return GeometricResult.SOLVE_FAILED; // if the second smallest singular value is the same size as the smallest there's problem double sv[] = solverNull.getSingularValues(); Arrays.sort(sv); if (sv[1] * singularThreshold <= sv[0]) { return GeometricResult.GEOMETRY_POOR; } foundInA.x = nullspace.get(0); foundInA.y = nullspace.get(1); foundInA.z = nullspace.get(2); foundInA.w = nullspace.get(3); return GeometricResult.SUCCESS; } private int addView( Se3_F64 motion , Point2D_F64 a , int index ) { final double sx = stats.stdX, sy = stats.stdY; // final double cx = stats.meanX, cy = stats.meanY; DMatrixRMaj R = motion.getR(); Vector3D_F64 T = motion.getT(); double r11 = R.data[0], r12 = R.data[1], r13 = R.data[2]; double r21 = R.data[3], r22 = R.data[4], r23 = R.data[5]; double r31 = R.data[6], r32 = R.data[7], r33 = R.data[8]; // These rows are derived by applying the scaling matrix to pixels and camera matrix // more comments are in the projective code // first row A.data[index++] = (a.x*r31-r11)/sx; A.data[index++] = (a.x*r32-r12)/sx; A.data[index++] = (a.x*r33-r13)/sx; A.data[index++] = (a.x*T.z-T.x)/sx; // second row A.data[index++] = (a.y*r31-r21)/sy; A.data[index++] = (a.y*r32-r22)/sy; A.data[index++] = (a.y*r33-r23)/sy; A.data[index++] = (a.y*T.z-T.y)/sy; return index; } public double getSingularThreshold() { return singularThreshold; } public void setSingularThreshold(double singularThreshold) { this.singularThreshold = singularThreshold; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy