All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.trifocal.EnforceTrifocalGeometry Maven / Gradle / Ivy

/*
 * Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.trifocal;

import boofcv.struct.geo.TrifocalTensor;
import georegression.struct.point.Point3D_F64;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.SingularOps_DDRM;
import org.ejml.dense.row.decomposition.svd.SafeSvd_DDRM;
import org.ejml.dense.row.factory.DecompositionFactory_DDRM;
import org.ejml.interfaces.decomposition.SingularValueDecomposition_F64;

/**
 * 

* Applies geometric constraints to an estimated trifocal tensor. See page 394 in [1]. *

* *

References:

*
    *
  • R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003
  • *
* * @author Peter Abeles */ public class EnforceTrifocalGeometry { // SVD which computes U and not V private SingularValueDecomposition_F64 svdU; // SVD which computes V and not U private SingularValueDecomposition_F64 svdV; // Storage for SVD private DMatrixRMaj U = new DMatrixRMaj(27,18); // Contains the linear mapping from TODO private DMatrixRMaj Up = new DMatrixRMaj(1,1); // Storage for solution as a function of the 18-nullity unknowns private DMatrixRMaj xp = new DMatrixRMaj(1,1); // Storage for the A*U, where A is the linear constraint matrix and U is the solution's subspace private DMatrixRMaj AU = new DMatrixRMaj(1,1); // The adjusted trifocal tensor in vector format private DMatrixRMaj vectorT = new DMatrixRMaj(27,1); // From the definition of the trifocal tensor: T_i = a_i*b_4^T + a_4*b_i^T // Columns of E are multiplied by the following unknowns: // [a(0,0) , a(0,1) , a(0,2) , a(1,0) .... b(0,0) , b(0,1) , b(0,2) , b(1,0) ] // Where a and b are elements of 3x3 matrices A and B in the P2 = [A|e2] P3=[B|e3] protected DMatrixRMaj E = new DMatrixRMaj(27,18); public EnforceTrifocalGeometry() { svdU = DecompositionFactory_DDRM.svd(10,10,true,false,true); svdV = DecompositionFactory_DDRM.svd(10,10,false,true,false); svdV = new SafeSvd_DDRM(svdV); // can't modify the input in this case } /** * Computes a trifocal tensor which minimizes the algebraic error given the * two epipoles and the linear constraint matrix. The epipoles are from a previously * computed trifocal tensor. * * @param e2 Epipole of first image in the second image * @param e3 Epipole of first image in the third image * @param A Linear constraint matrix for trifocal tensor created from image observations. */ public void process( Point3D_F64 e2 , Point3D_F64 e3 , DMatrixRMaj A ) { // construct the linear system that the solution which solves the unknown square // matrices in the camera matrices constructE(e2, e3); // Computes U, which is used to map the 18 unknowns onto the 27 trifocal unknowns svdU.decompose(E); svdU.getU(U, false); // Copy the parts of U which correspond to the non singular parts if the SVD // since there are only really 18-nullity unknowns due to linear dependencies SingularOps_DDRM.descendingOrder(U,false,svdU.getSingularValues(),svdU.numberOfSingularValues(),null,false); int rank = SingularOps_DDRM.rank(svdU, 1e-13); Up.reshape(U.numRows,rank); CommonOps_DDRM.extract(U,0,U.numRows,0,Up.numCols,Up,0,0); // project the linear constraint matrix into this subspace AU.reshape(A.numRows,Up.numCols); CommonOps_DDRM.mult(A,Up,AU); // Extract the solution of ||A*U*x|| = 0 from the null space svdV.decompose(AU); xp.reshape(rank,1); SingularOps_DDRM.nullVector(svdV,true,xp); // Translate the solution from the subspace and into a valid trifocal tensor CommonOps_DDRM.mult(Up,xp,vectorT); // the sign of vectorT is arbitrary, but make it positive for consistency if( vectorT.data[0] > 0 ) CommonOps_DDRM.changeSign(vectorT); } /** * Returns the algebraic error vector. error = A*U*x. length = number * of observations */ public void computeErrorVector( DMatrixRMaj A , DMatrixRMaj errors ) { errors.reshape(A.numRows,1); CommonOps_DDRM.mult(A,vectorT,errors); } /** * Inserts the found trifocal tensor into the provided object. */ public void extractSolution( TrifocalTensor tensor ) { tensor.convertFrom(vectorT); } /** * The matrix E is a linear system for computing the trifocal tensor. The columns * are the unknown square matrices from view 2 and 3. The right most column in * both projection matrices are the provided epipoles, whose values are inserted into E */ protected void constructE( Point3D_F64 e2 , Point3D_F64 e3 ) { E.zero(); for( int i = 0; i < 3; i++ ) { for( int j = 0; j < 3; j++ ) { for( int k = 0; k < 3; k++ ) { // which element in the trifocal tensor is being manipulated int row = 9*i + 3*j + k; // which unknowns are being multiplied by int col1 = j*3 + i; int col2 = k*3 + i + 9; E.data[row*18 + col1 ] = e3.getIdx(k); E.data[row*18 + col2 ] = -e2.getIdx(j); } } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy