boofcv.alg.geo.trifocal.TrifocalAlgebraicPoint7 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-geo Show documentation
Show all versions of boofcv-geo Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.geo.trifocal;
import boofcv.alg.geo.LowLevelMultiViewOps;
import boofcv.struct.geo.AssociatedTriple;
import boofcv.struct.geo.TrifocalTensor;
import georegression.struct.point.Point3D_F64;
import org.ddogleg.optimization.UnconstrainedLeastSquares;
import org.ddogleg.optimization.UtilOptimize;
import org.ddogleg.optimization.functions.FunctionNtoM;
import org.ejml.data.DMatrixRMaj;
import java.util.List;
/**
*
* Initially computes the trifocal tensor using the linear method {@link TrifocalLinearPoint7}, but
* then iteratively refines the solution to minimize algebraic error by adjusting the two epipoles.
* The solution will enforce all the constraints and be geometrically valid. See page 395 in [1].
*
*
* References:
*
* - R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003
*
*
* @author Peter Abeles
*/
public class TrifocalAlgebraicPoint7 extends TrifocalLinearPoint7 {
// optimization algorithm of function
private UnconstrainedLeastSquares optimizer;
private ErrorFunction errorFunction = new ErrorFunction();
// optimization parameters
private int maxIterations;
private double ftol;
private double gtol;
// storage for epipoles being optimised
private double param[] = new double[6];
/**
* Configures optimization algorithms
*
* @param optimizer Which least squares minimizer should be used.
* @param maxIterations Maximum number of iterations it will optimize for
* @param ftol Convergence tolerance. See {@link UnconstrainedLeastSquares} for details.
* @param gtol Convergence tolerance. See {@link UnconstrainedLeastSquares} for details.
*/
public TrifocalAlgebraicPoint7(UnconstrainedLeastSquares optimizer,
int maxIterations, double ftol,
double gtol) {
this.optimizer = optimizer;
this.maxIterations = maxIterations;
this.ftol = ftol;
this.gtol = gtol;
}
@Override
public boolean process(List observations, TrifocalTensor solution ) {
if( observations.size() < 7 )
throw new IllegalArgumentException("At least 7 correspondences must be provided");
// compute normalization to reduce numerical errors
LowLevelMultiViewOps.computeNormalization(observations, N1, N2, N3);
// compute solution in normalized pixel coordinates
createLinearSystem(observations);
// solve for the trifocal tensor
solveLinearSystem();
// minimize geometric error
minimizeWithGeometricConstraints();
// undo normalization
removeNormalization(solution);
return true;
}
/**
* Minimize the algebraic error using LM. The two epipoles are the parameters being optimized.
*/
private void minimizeWithGeometricConstraints() {
extractEpipoles.setTensor(solutionN);
extractEpipoles.extractEpipoles(e2,e3);
// encode the parameters being optimized
param[0] = e2.x; param[1] = e2.y; param[2] = e2.z;
param[3] = e3.x; param[4] = e3.y; param[5] = e3.z;
// adjust the error function for the current inputs
errorFunction.init();
// set up the optimization algorithm
optimizer.setFunction(errorFunction,null);
optimizer.initialize(param,gtol,ftol);
// optimize until convergence or the maximum number of iterations
UtilOptimize.process(optimizer, maxIterations);
// get the results and compute the trifocal tensor
double found[] = optimizer.getParameters();
paramToEpipoles(found,e2,e3);
enforce.process(e2,e3,A);
enforce.extractSolution(solutionN);
}
private static void paramToEpipoles(double[] found , Point3D_F64 e2 , Point3D_F64 e3 ) {
e2.x = found[0]; e2.y = found[1]; e2.z = found[2];
e3.x = found[3]; e3.y = found[4]; e3.z = found[5];
}
/**
* Computes the algebraic error for a given set of epipoles
*/
private class ErrorFunction implements FunctionNtoM {
Point3D_F64 e2 = new Point3D_F64();
Point3D_F64 e3 = new Point3D_F64();
DMatrixRMaj errors = new DMatrixRMaj(1,1);
public void init() {
errors.numRows = A.numRows;
errors.numCols = 1;
}
@Override
public int getNumOfInputsN() {
return 6;
}
@Override
public int getNumOfOutputsM() {
return A.numRows;
}
@Override
public void process(double[] input, double[] output) {
paramToEpipoles(input, e2, e3);
enforce.process(e2,e3,A);
errors.data = output;
enforce.computeErrorVector(A,errors);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy