boofcv.alg.geo.trifocal.TrifocalLinearPoint7 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-geo Show documentation
Show all versions of boofcv-geo Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.geo.trifocal;
import boofcv.alg.geo.LowLevelMultiViewOps;
import boofcv.alg.geo.NormalizationPoint2D;
import boofcv.struct.geo.AssociatedTriple;
import boofcv.struct.geo.TrifocalTensor;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point3D_F64;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.SingularOps_DDRM;
import org.ejml.dense.row.decomposition.svd.SafeSvd_DDRM;
import org.ejml.dense.row.factory.DecompositionFactory_DDRM;
import org.ejml.interfaces.decomposition.SingularValueDecomposition_F64;
import java.util.List;
/**
*
* Estimates the {@link TrifocalTensor} using a linear algorithm from 7 or more image points correspondences
* from three views, see page 394 of [1] for details. After an initial linear solution has been computed
* it is improved upon by applying geometric constraints. Note that the solution will not be optimal in a geometric
* or algebraic sense, but can be used as an initial estimate for refinement algorithms.
*
*
*
* References:
*
* - R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003
*
*
*
* @see EnforceTrifocalGeometry
*
* @author Peter Abeles
*/
public class TrifocalLinearPoint7 {
// trifocal tensor computed from normalized coordinates
protected TrifocalTensor solutionN = new TrifocalTensor();
// normalization matrices for points
protected NormalizationPoint2D N1 = new NormalizationPoint2D();
protected NormalizationPoint2D N2 = new NormalizationPoint2D();
protected NormalizationPoint2D N3 = new NormalizationPoint2D();
// the linear system which is solved for
protected DMatrixRMaj A = new DMatrixRMaj(7,27);
// svd used to extract the null space
protected SingularValueDecomposition_F64 svdNull;
// Solution in vector format
protected DMatrixRMaj vectorizedSolution = new DMatrixRMaj(27,1);
// triple of points after normalization
protected Point2D_F64 p1_norm = new Point2D_F64();
protected Point2D_F64 p2_norm = new Point2D_F64();
protected Point2D_F64 p3_norm = new Point2D_F64();
// enforces the geometry constraints
protected EnforceTrifocalGeometry enforce = new EnforceTrifocalGeometry();
protected TrifocalExtractGeometries extractEpipoles = new TrifocalExtractGeometries();
// Epipoles needed to enforce the above constraints
protected Point3D_F64 e2 = new Point3D_F64();
protected Point3D_F64 e3 = new Point3D_F64();
public TrifocalLinearPoint7() {
svdNull = DecompositionFactory_DDRM.svd(24, 27, false, true, false);
svdNull = new SafeSvd_DDRM(svdNull);
}
/**
* Estimates the trifocal tensor given the set of observations
*
* @param observations Set of observations
* @param solution Output: Where the solution is written to
* @return true if successful and false if it fails
*/
public boolean process( List observations , TrifocalTensor solution ) {
if( observations.size() < 7 )
throw new IllegalArgumentException(
"At least 7 correspondences must be provided. Found "+observations.size());
// compute normalization to reduce numerical errors
LowLevelMultiViewOps.computeNormalization(observations, N1, N2, N3);
// compute solution in normalized pixel coordinates
createLinearSystem(observations);
// solve for the trifocal tensor
solveLinearSystem();
// enforce geometric constraints to improve solution
extractEpipoles.setTensor(solutionN);
extractEpipoles.extractEpipoles(e2,e3);
enforce.process(e2,e3,A);
enforce.extractSolution(solutionN);
// undo normalization
removeNormalization(solution);
return true;
}
/**
* Constructs the linear matrix that describes from the 3-point constraint with linear
* dependent rows removed
*/
protected void createLinearSystem( List observations ) {
int N = observations.size();
A.reshape(4*N,27);
A.zero();
for( int i = 0; i < N; i++ ) {
AssociatedTriple t = observations.get(i);
N1.apply(t.p1,p1_norm);
N2.apply(t.p2,p2_norm);
N3.apply(t.p3,p3_norm);
insert(i,0 , p1_norm.x); // tensor 1
insert(i,1 , p1_norm.y); // tensor 2
insert(i,2 ,1); // tensor 3
}
}
private void insert( int indexObs , int K , double xk ) {
int start = 27*4*indexObs + 9*K;
// i = 1, l = 1
int indexT33 = 8;
int indexTi3 = 2;
int indexT3l = 6;
int indexTil = 0;
A.data[start+indexT33] = xk*p2_norm.x*p3_norm.x;
A.data[start+indexTi3] = -xk*p3_norm.x;
A.data[start+indexT3l] = -xk*p2_norm.x;
A.data[start+indexTil] = xk;
// i = 1, l = 2
start += 27;
indexT3l = 7;
indexTil = 1;
A.data[start+indexT33] = xk*p2_norm.x*p3_norm.y;
A.data[start+indexTi3] = -xk*p3_norm.y;
A.data[start+indexT3l] = -xk*p2_norm.x;
A.data[start+indexTil] = xk;
// i = 2, l = 1
start += 27;
indexTi3 = 5;
indexT3l = 6;
indexTil = 3;
A.data[start+indexT33] = xk*p2_norm.y*p3_norm.x;
A.data[start+indexTi3] = -xk*p3_norm.x;
A.data[start+indexT3l] = -xk*p2_norm.y;
A.data[start+indexTil] = xk;
// i = 2, l = 2
start += 27;
indexTi3 = 5;
indexT3l = 7;
indexTil = 4;
A.data[start+indexT33] = xk*p2_norm.y*p3_norm.y;
A.data[start+indexTi3] = -xk*p3_norm.y;
A.data[start+indexT3l] = -xk*p2_norm.y;
A.data[start+indexTil] = xk;
}
/**
* Computes the null space of the linear system to find the trifocal tensor
*/
protected boolean solveLinearSystem() {
if( !svdNull.decompose(A) )
return false;
SingularOps_DDRM.nullVector(svdNull,true,vectorizedSolution);
solutionN.convertFrom(vectorizedSolution);
return true;
}
/**
* Translates the trifocal tensor back into regular coordinate system
*/
protected void removeNormalization( TrifocalTensor solution ) {
DMatrixRMaj N2_inv = N2.matrixInv();
DMatrixRMaj N3_inv = N3.matrixInv();
DMatrixRMaj N1 = this.N1.matrix();
for( int i = 0; i < 3; i++ ) {
DMatrixRMaj T = solution.getT(i);
for( int j = 0; j < 3; j++ ) {
for( int k = 0; k < 3; k++ ) {
double sum = 0;
for( int r = 0; r < 3; r++ ) {
double n1 = N1.get(r,i);
DMatrixRMaj TN = solutionN.getT(r);
for( int s = 0; s < 3; s++ ) {
double n2 = N2_inv.get(j,s);
for( int t = 0; t < 3; t++ ) {
sum += n1*n2*N3_inv.get(k,t)*TN.get(s,t);
}
}
}
T.set(j,k,sum);
}
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy