All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.struct.geo.TrifocalTensor Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.struct.geo;

import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.SpecializedOps_DDRM;

/**
 * The trifocal tensor describes the projective relationship between three different camera views and is
 * analogous to the Fundamental matrix for two views. The trifocal tensor is composed of three matrices
 * which are 3x3.
 *
 * @author Peter Abeles
 */
public class TrifocalTensor {
	public DMatrixRMaj T1 = new DMatrixRMaj(3,3);
	public DMatrixRMaj T2 = new DMatrixRMaj(3,3);
	public DMatrixRMaj T3 = new DMatrixRMaj(3,3);

	public DMatrixRMaj getT( int index ) {
		switch( index ) {
			case 0:
				return T1;

			case 1:
				return T2;

			case 2:
				return T3;
		}

		throw new IllegalArgumentException("Invalid index");
	}

	public void set( TrifocalTensor a ) {
		T1.set(a.T1);
		T2.set(a.T2);
		T3.set(a.T3);
	}

	/**
	 * 

* Converts the 27 element vector into a three matrix format:
* T_i(j,k) = m.data[ i*9 + j*3 + k ] *

* * @param m Input: Trifocal tensor encoded in a vector */ public void convertFrom( DMatrixRMaj m ) { if( m.getNumElements() != 27 ) throw new IllegalArgumentException("Input matrix/vector must have 27 elements"); for( int i = 0; i < 9; i++ ) { T1.data[i] = m.data[i]; T2.data[i] = m.data[i+9]; T3.data[i] = m.data[i+18]; } } /** *

* Converts this matrix formated trifocal into a 27 element vector:
* m.data[ i*9 + j*3 + k ] = T_i(j,k) *

* * @param m Output: Trifocal tensor encoded in a vector */ public void convertTo( DMatrixRMaj m ) { if( m.getNumElements() != 27 ) throw new IllegalArgumentException("Input matrix/vector must have 27 elements"); for( int i = 0; i < 9; i++ ) { m.data[i] = T1.data[i]; m.data[i+9] = T2.data[i]; m.data[i+18] = T3.data[i]; } } /** * Returns a new copy of the TrifocalTensor * * @return Copy of the trifocal tensor */ public TrifocalTensor copy() { TrifocalTensor ret = new TrifocalTensor(); ret.T1.set(T1); ret.T2.set(T2); ret.T3.set(T3); return ret; } /** * The scale of the trifocal tensor is arbitrary. However there are situations when comparing results that * using a consistent scale is useful. This function normalizes the sensor such that its Euclidean length * (the f-norm) is equal to one. */ public void normalizeScale() { double sum = 0; sum += SpecializedOps_DDRM.elementSumSq(T1); sum += SpecializedOps_DDRM.elementSumSq(T2); sum += SpecializedOps_DDRM.elementSumSq(T3); double n = Math.sqrt(sum); CommonOps_DDRM.scale(1.0/n,T1); CommonOps_DDRM.scale(1.0/n,T2); CommonOps_DDRM.scale(1.0/n,T3); } @Override public String toString() { return "TrifocalTensor {\nT1:\n"+T1+"\nT2:\n"+T2+"\nT3:\n"+T3+"}"; } public void print() { System.out.println(this); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy