All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.abst.geo.calibration.CalibrateMonoPlanar Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2023, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.abst.geo.calibration;

import boofcv.abst.geo.bundle.SceneStructureMetric;
import boofcv.alg.geo.calibration.CalibrationObservation;
import boofcv.alg.geo.calibration.CalibrationPlanarGridZhang99;
import boofcv.alg.geo.calibration.ScoreCalibrationFill;
import boofcv.alg.geo.calibration.ScoreCalibrationGeometricDiversity;
import boofcv.alg.geo.calibration.cameras.Zhang99Camera;
import boofcv.alg.geo.calibration.cameras.Zhang99CameraBrown;
import boofcv.alg.geo.calibration.cameras.Zhang99CameraKannalaBrandt;
import boofcv.alg.geo.calibration.cameras.Zhang99CameraUniversalOmni;
import boofcv.misc.BoofMiscOps;
import boofcv.struct.calib.CameraModel;
import georegression.struct.point.Point2D_F64;
import georegression.struct.se.Se3_F64;
import lombok.Getter;
import org.ddogleg.struct.VerbosePrint;
import org.jetbrains.annotations.Nullable;

import java.io.File;
import java.io.PrintStream;
import java.util.ArrayList;
import java.util.List;
import java.util.Set;

/**
 * 

* Performs the full processing loop for calibrating a mono camera from a planar grid. A * directory is specified that the images are read in from. Calibration points are detected * inside the image and feed into the Zhang99 algorithm for parameter estimation. *

* *

* Internally it supports status updates for a GUI and skips over bad images. Invoke functions * in the following order: *

    *
  1. {@link #configure}
  2. *
  3. {@link #initialize}
  4. *
  5. {@link #addImage}
  6. *
  7. {@link #process}
  8. *
  9. {@link #getIntrinsic}
  10. *
*

* *

* Most 3D operations in BoofCV assume that the image coordinate system is right handed and the +Z axis is * pointing out of the camera. In standard image coordinate the origin (0,0) is at the top left corner with +x going * to the right and +y going down, then if it is right handed +z will be out of the image. However some times * this pseudo standard is not followed and the y-axis needs to be inverted by setting isInverted to true. *

* * @author Peter Abeles */ @SuppressWarnings({"NullAway.Init"}) public class CalibrateMonoPlanar implements VerbosePrint { // detects calibration points inside of images protected DetectSingleFiducialCalibration detector; /** Layout of points on each calibration target */ protected List> layouts; /** computes calibration parameters */ @Getter protected CalibrationPlanarGridZhang99 zhang99; // computed parameters @Getter protected SceneStructureMetric structure; protected CameraModel foundIntrinsic; // Information on calibration targets and results protected @Getter List observations = new ArrayList<>(); protected @Getter List errors = new ArrayList<>(); public @Nullable PrintStream verbose = null; // shape of the image private int imageWidth; private int imageHeight; /** * Resets internal data structures. Must call before adding images * * @param width Image width * @param height Image height */ public void initialize( int width, int height, List> layouts ) { observations = new ArrayList<>(); errors = new ArrayList<>(); imageWidth = width; imageHeight = height; this.layouts = layouts; } /** * Specifies the calibration model. */ public void configure( boolean assumeZeroSkew, Zhang99Camera camera ) { zhang99 = new CalibrationPlanarGridZhang99(camera); zhang99.setZeroSkew(assumeZeroSkew); } public void configurePinhole( boolean assumeZeroSkew, int numRadialParam, boolean includeTangential ) { var camera = new Zhang99CameraBrown(assumeZeroSkew, includeTangential, numRadialParam); zhang99 = new CalibrationPlanarGridZhang99(camera); zhang99.setZeroSkew(assumeZeroSkew); } public void configureUniversalOmni( boolean assumeZeroSkew, int numRadialParam, boolean includeTangential ) { zhang99 = new CalibrationPlanarGridZhang99( new Zhang99CameraUniversalOmni(assumeZeroSkew, includeTangential, numRadialParam)); zhang99.setZeroSkew(assumeZeroSkew); } public void configureKannalaBrandt( boolean assumeZeroSkew, int numSymmetric, int numAsymmetric ) { zhang99 = new CalibrationPlanarGridZhang99( new Zhang99CameraKannalaBrandt(assumeZeroSkew, numSymmetric, numAsymmetric)); zhang99.setZeroSkew(assumeZeroSkew); } public void configureUniversalOmni( boolean assumeZeroSkew, int numRadialParam, boolean includeTangential, double mirrorOffset ) { zhang99 = new CalibrationPlanarGridZhang99( new Zhang99CameraUniversalOmni(assumeZeroSkew, includeTangential, numRadialParam, mirrorOffset)); zhang99.setZeroSkew(assumeZeroSkew); } /** Convience function which returns true if the provided shape matches the expected image shape */ public boolean isExpectedShape( int width, int height ) { return width == imageWidth && height == imageHeight; } /** * Adds the observations from a calibration target detector. * *

Note: If you see two targets in one image then that image is treated as two image, one for each observations.

* * @param observation Detected calibration points */ public void addImage( CalibrationObservation observation ) { observations.add(observation); } /** * Removes the most recently added image */ public void removeLatestImage() { observations.remove(observations.size() - 1); } /** * After calibration points have been found this invokes the Zhang99 algorithm to * estimate calibration parameters. Error statistics are also computed. */ public T process() { if (imageWidth == 0) throw new RuntimeException("Must call initialize() first"); if (zhang99 == null) throw new IllegalArgumentException("Please call configure first."); zhang99.setLayouts(layouts); zhang99.setVerbose(verbose, null); if (!zhang99.process(observations)) { throw new RuntimeException("Zhang99 algorithm failed!"); } structure = zhang99.getStructure(); errors = zhang99.computeErrors(); foundIntrinsic = zhang99.getCameraModel(); foundIntrinsic.width = imageWidth; foundIntrinsic.height = imageHeight; return (T)foundIntrinsic; } /** * Returns estimated transform from calibration target to camera view */ public Se3_F64 getTargetToView( int viewIdx ) { return structure.getParentToView(viewIdx); } public String computeQualityText( List imageNames ) { var fillScore = new ScoreCalibrationFill(); var quality = new CalibrationQuality(); computeQuality(foundIntrinsic, fillScore, layouts, observations, quality); return computeQualityText(errors, imageNames, quality); } /** Creates human-readable text with metrics that indicate calibration quality */ public static String computeQualityText( List errors, List imageNames, CalibrationQuality quality ) { BoofMiscOps.checkEq(errors.size(), imageNames.size()); // Compute a histogram of how many observations have a residual error less than these values var summaryThresholds = new double[]{0.25, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0, 20.0}; var counts = new int[summaryThresholds.length]; int totalObservations = 0; for (int i = 0; i < imageNames.size(); i++) { ImageResults r = errors.get(i); totalObservations += r.pointError.length; for (int j = 0; j < r.pointError.length; j++) { double e = r.pointError[j]; for (int iterThresh = summaryThresholds.length - 1; iterThresh >= 0; iterThresh--) { if (summaryThresholds[iterThresh] < e) break; counts[iterThresh]++; } } } double averageError = 0.0; double maxError = 0.0; for (int i = 0; i < imageNames.size(); i++) { ImageResults r = errors.get(i); averageError += r.meanError; maxError = Math.max(maxError, r.maxError); } averageError /= imageNames.size(); String text = ""; text += String.format("quality.fill_border %5.1f%%\n", 100*quality.borderFill); text += String.format("quality.fill_inner %5.1f%%\n", 100*quality.innerFill); text += String.format("quality.geometric %5.1f%%\n", 100*quality.geometric); text += "\n"; text += String.format("Reprojection Errors (px):\nmean=%.3f max=%.3f\n\n", averageError, maxError); var builder = new StringBuilder(); generateReprojectionErrorHistogram(summaryThresholds, counts, totalObservations, builder); text += builder.toString(); text += String.format("%-10s | %8s\n", "image", "max (px)"); for (int i = 0; i < imageNames.size(); i++) { String image = imageNames.get(i); ImageResults r = errors.get(i); text += String.format("%-12s %8.3f\n", new File(image).getName(), r.maxError); } return text; } public static void generateReprojectionErrorHistogram( double[] thresholds, int[] counts, int totalObservations, StringBuilder builder ) { builder.append("Percent Reprojection Errors Less than X pixels. N=").append(totalObservations).append("\n"); for (int i = 0; i < thresholds.length; i++) { builder.append(String.format(" %6.2f |", thresholds[i])); } builder.append("\n"); for (int i = 0; i < counts.length; i++) { builder.append(String.format(" %5.1f%% |", 100.0*counts[i]/totalObservations)); } builder.append("\n\n"); } /** * Computes quality metrics to quantify how good of a job the person calibrating did * * @param intrinsic Estimated camera model from calibration * @param fillScorer Used to compute image fill score * @param targetLayouts Known location of points in world coordinates * @param observations Observed calibration points * @param quality (Output) Metrics used to evaluate how good the calibration is */ public static void computeQuality( CameraModel intrinsic, ScoreCalibrationFill fillScorer, List> targetLayouts, List observations, CalibrationQuality quality ) { fillScorer.initialize(intrinsic.width, intrinsic.height); var geoScorer = new ScoreCalibrationGeometricDiversity(true); for (int i = 0; i < observations.size(); i++) { CalibrationObservation obs = observations.get(i); fillScorer.addObservation(obs.points); geoScorer.addObservation(obs.points, targetLayouts.get(obs.target)); } geoScorer.computeScore(); quality.borderFill = fillScorer.getScoreBorder(); quality.innerFill = fillScorer.getScoreInner(); quality.geometric = geoScorer.getScore(); } /** * Prints out error information to standard out */ public static void printErrors( List results, PrintStream out ) { double totalError = 0; for (int i = 0; i < results.size(); i++) { ImageResults r = results.get(i); totalError += r.meanError; out.printf("image %3d errors (px) mean=%7.1e max=%7.1e, bias: %8.1e %8.1e\n", i, r.meanError, r.maxError, r.biasX, r.biasY); } out.println("Average Mean Error = " + (totalError/results.size())); } public T getIntrinsic() { return (T)foundIntrinsic; } @Override public void setVerbose( @Nullable PrintStream out, @Nullable Set configuration ) { this.verbose = out; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy