boofcv.abst.geo.f.LeastSquaresFundamental Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-geo Show documentation
Show all versions of boofcv-geo Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2021, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.abst.geo.f;
import boofcv.abst.geo.RefineEpipolar;
import boofcv.abst.geo.optimization.ResidualsEpipolarMatrix;
import boofcv.alg.geo.ModelObservationResidual;
import boofcv.alg.geo.f.FundamentalResidualSampson;
import boofcv.alg.geo.f.FundamentalResidualSimple;
import boofcv.alg.geo.f.ParamFundamentalEpipolar;
import boofcv.struct.geo.AssociatedPair;
import org.ddogleg.fitting.modelset.ModelCodec;
import org.ddogleg.optimization.FactoryOptimization;
import org.ddogleg.optimization.UnconstrainedLeastSquares;
import org.ejml.data.DMatrixRMaj;
import java.util.List;
/**
* Improves upon the initial estimate of the Fundamental matrix by minimizing the error.
*
* @author Peter Abeles
*/
public class LeastSquaresFundamental implements RefineEpipolar {
ModelCodec paramModel;
ResidualsEpipolarMatrix func;
double param[];
UnconstrainedLeastSquares minimizer;
int maxIterations;
double convergenceTol;
public LeastSquaresFundamental( double convergenceTol,
int maxIterations,
boolean useSampson ) {
this(new ParamFundamentalEpipolar(), convergenceTol, maxIterations, useSampson);
}
public LeastSquaresFundamental( ModelCodec paramModel,
double convergenceTol,
int maxIterations,
boolean useSampson ) {
this.paramModel = paramModel;
this.maxIterations = maxIterations;
this.convergenceTol = convergenceTol;
param = new double[paramModel.getParamLength()];
ModelObservationResidual residual;
if (useSampson)
residual = new FundamentalResidualSampson();
else
residual = new FundamentalResidualSimple();
func = new ResidualsEpipolarMatrix(paramModel, residual);
minimizer = FactoryOptimization.levenbergMarquardt(null, false);
}
@Override
public boolean fitModel( List obs, DMatrixRMaj F, DMatrixRMaj refinedF ) {
func.setObservations(obs);
paramModel.encode(F, param);
minimizer.setFunction(func, null);
minimizer.initialize(param, 0, convergenceTol*obs.size());
for (int i = 0; i < maxIterations; i++) {
if (minimizer.iterate())
break;
}
paramModel.decode(minimizer.getParameters(), refinedF);
return true;
}
@Override
public double getFitScore() {
return minimizer.getFunctionValue();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy