All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.abst.geo.pose.WrapP3PLineDistance Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.abst.geo.pose;

import boofcv.abst.geo.EstimateNofPnP;
import boofcv.alg.geo.pose.P3PLineDistance;
import boofcv.alg.geo.pose.PointDistance3;
import boofcv.struct.geo.Point2D3D;
import georegression.fitting.MotionTransformPoint;
import georegression.struct.point.Point3D_F64;
import georegression.struct.point.Vector3D_F64;
import georegression.struct.se.Se3_F64;
import org.ddogleg.struct.DogArray;

import java.util.ArrayList;
import java.util.List;

/**
 * Converts solutions generated by P3PLineDistance into rigid body motions.
 *
 * @author Peter Abeles
 */
public class WrapP3PLineDistance implements EstimateNofPnP {

	// estimates the distance the camera center is from each of the 3 points.
	private final P3PLineDistance alg;
	// computes the optimal rigid body motion between the two views given a point cloud
	private final MotionTransformPoint motionFit;

	// location of 3D point given the found distance
	private final Point3D_F64 X1 = new Point3D_F64();
	private final Point3D_F64 X2 = new Point3D_F64();
	private final Point3D_F64 X3 = new Point3D_F64();

	// observations normalized to 1
	private final Vector3D_F64 u1 = new Vector3D_F64();
	private final Vector3D_F64 u2 = new Vector3D_F64();
	private final Vector3D_F64 u3 = new Vector3D_F64();

	// storage for 3D point clouds.
	// World = point in world coordinate system and Camera = camera coordinates sytsem
	private final List cloudWorld = new ArrayList<>();
	private final List cloudCamera = new ArrayList<>();

	public WrapP3PLineDistance( P3PLineDistance alg,
								MotionTransformPoint motionFit ) {
		this.alg = alg;
		this.motionFit = motionFit;

		cloudCamera.add(X1);
		cloudCamera.add(X2);
		cloudCamera.add(X3);
	}

	@Override
	public boolean process( List inputs, DogArray solutions ) {
		if (inputs.size() != 3)
			throw new IllegalArgumentException("Three and only three inputs are required. Not " + inputs.size());

		solutions.reset();

		Point2D3D P1 = inputs.get(0);
		Point2D3D P2 = inputs.get(1);
		Point2D3D P3 = inputs.get(2);

		// Compute the length of each side in the triangle
		double length12 = P1.location.distance(P2.getLocation());
		double length13 = P1.location.distance(P3.getLocation());
		double length23 = P2.location.distance(P3.getLocation());

		if (!alg.process(P1.observation, P2.observation, P3.observation, length23, length13, length12))
			return false;

		DogArray distances = alg.getSolutions();

		if (distances.size == 0)
			return false;

		// convert observations into a 3D pointing vector and normalize to one
		u1.setTo(P1.observation.x, P1.observation.y, 1); // homogeneous coordinates
		u2.setTo(P2.observation.x, P2.observation.y, 1);
		u3.setTo(P3.observation.x, P3.observation.y, 1);

		u1.normalize();
		u2.normalize();
		u3.normalize();

		// set up world point cloud
		cloudWorld.clear();
		cloudWorld.add(P1.location);
		cloudWorld.add(P2.location);
		cloudWorld.add(P3.location);

		for (int i = 0; i < distances.size; i++) {
			PointDistance3 pd = distances.get(i);

			// find points in camera frame
			X1.setTo(u1.x*pd.dist1, u1.y*pd.dist1, u1.z*pd.dist1);
			X2.setTo(u2.x*pd.dist2, u2.y*pd.dist2, u2.z*pd.dist2);
			X3.setTo(u3.x*pd.dist3, u3.y*pd.dist3, u3.z*pd.dist3);

			if (!motionFit.process(cloudWorld, cloudCamera))
				continue;

			// NOTE: This transform is world to camera and it's perfectly valid for to have a negative Z value
			//       and be behind the camera.
			Se3_F64 found = solutions.grow();
			found.setTo(motionFit.getTransformSrcToDst());
		}


		return solutions.size() != 0;
	}

	@Override
	public int getMinimumPoints() {
		return 3;
	}
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy