boofcv.abst.geo.pose.WrapP3PLineDistance Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-geo Show documentation
Show all versions of boofcv-geo Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2021, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.abst.geo.pose;
import boofcv.abst.geo.EstimateNofPnP;
import boofcv.alg.geo.pose.P3PLineDistance;
import boofcv.alg.geo.pose.PointDistance3;
import boofcv.struct.geo.Point2D3D;
import georegression.fitting.MotionTransformPoint;
import georegression.struct.point.Point3D_F64;
import georegression.struct.point.Vector3D_F64;
import georegression.struct.se.Se3_F64;
import org.ddogleg.struct.DogArray;
import java.util.ArrayList;
import java.util.List;
/**
* Converts solutions generated by P3PLineDistance into rigid body motions.
*
* @author Peter Abeles
*/
public class WrapP3PLineDistance implements EstimateNofPnP {
// estimates the distance the camera center is from each of the 3 points.
private final P3PLineDistance alg;
// computes the optimal rigid body motion between the two views given a point cloud
private final MotionTransformPoint motionFit;
// location of 3D point given the found distance
private final Point3D_F64 X1 = new Point3D_F64();
private final Point3D_F64 X2 = new Point3D_F64();
private final Point3D_F64 X3 = new Point3D_F64();
// observations normalized to 1
private final Vector3D_F64 u1 = new Vector3D_F64();
private final Vector3D_F64 u2 = new Vector3D_F64();
private final Vector3D_F64 u3 = new Vector3D_F64();
// storage for 3D point clouds.
// World = point in world coordinate system and Camera = camera coordinates sytsem
private final List cloudWorld = new ArrayList<>();
private final List cloudCamera = new ArrayList<>();
public WrapP3PLineDistance( P3PLineDistance alg,
MotionTransformPoint motionFit ) {
this.alg = alg;
this.motionFit = motionFit;
cloudCamera.add(X1);
cloudCamera.add(X2);
cloudCamera.add(X3);
}
@Override
public boolean process( List inputs, DogArray solutions ) {
if (inputs.size() != 3)
throw new IllegalArgumentException("Three and only three inputs are required. Not " + inputs.size());
solutions.reset();
Point2D3D P1 = inputs.get(0);
Point2D3D P2 = inputs.get(1);
Point2D3D P3 = inputs.get(2);
// Compute the length of each side in the triangle
double length12 = P1.location.distance(P2.getLocation());
double length13 = P1.location.distance(P3.getLocation());
double length23 = P2.location.distance(P3.getLocation());
if (!alg.process(P1.observation, P2.observation, P3.observation, length23, length13, length12))
return false;
DogArray distances = alg.getSolutions();
if (distances.size == 0)
return false;
// convert observations into a 3D pointing vector and normalize to one
u1.setTo(P1.observation.x, P1.observation.y, 1); // homogeneous coordinates
u2.setTo(P2.observation.x, P2.observation.y, 1);
u3.setTo(P3.observation.x, P3.observation.y, 1);
u1.normalize();
u2.normalize();
u3.normalize();
// set up world point cloud
cloudWorld.clear();
cloudWorld.add(P1.location);
cloudWorld.add(P2.location);
cloudWorld.add(P3.location);
for (int i = 0; i < distances.size; i++) {
PointDistance3 pd = distances.get(i);
// find points in camera frame
X1.setTo(u1.x*pd.dist1, u1.y*pd.dist1, u1.z*pd.dist1);
X2.setTo(u2.x*pd.dist2, u2.y*pd.dist2, u2.z*pd.dist2);
X3.setTo(u3.x*pd.dist3, u3.y*pd.dist3, u3.z*pd.dist3);
if (!motionFit.process(cloudWorld, cloudCamera))
continue;
// NOTE: This transform is world to camera and it's perfectly valid for to have a negative Z value
// and be behind the camera.
Se3_F64 found = solutions.grow();
found.setTo(motionFit.getTransformSrcToDst());
}
return solutions.size() != 0;
}
@Override
public int getMinimumPoints() {
return 3;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy