All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.DecomposeEssential Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2022, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo;

import georegression.struct.point.Vector3D_F64;
import georegression.struct.se.Se3_F64;
import lombok.Getter;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.SingularOps_DDRM;
import org.ejml.dense.row.factory.DecompositionFactory_DDRM;
import org.ejml.interfaces.decomposition.SingularValueDecomposition;

import java.util.ArrayList;
import java.util.List;

/**
 * 

* Decomposed the essential matrix into a rigid body motion; rotation and translation. This is the rigid body * transformation from the first camera frame into the second camera frame. A total f four possible motions * will be found and the ambiguity can be removed by calling {@link PositiveDepthConstraintCheck} on each hypothesis. *

* *

* An essential matrix is defined as E=cross(T)*R, where cross(T) is a cross product matrix, * T is translation vector, and R is a 3x3 rotation matrix. *

* *

This decomposition follows the treatment in found in page 259 of "Multiple View Geometry in Computer Vision" * by Richard Hartley and Andrew Zisserman.

* * @author Peter Abeles */ @SuppressWarnings({"NullAway.Init"}) public class DecomposeEssential { private final SingularValueDecomposition svd = DecompositionFactory_DDRM.svd(3, 3, true, true, false); // storage for SVD DMatrixRMaj U, S, V; // storage for the four possible solutions List solutions = new ArrayList<>(); // working copy of E DMatrixRMaj E_copy = new DMatrixRMaj(3, 3); // local storage used when computing a hypothesis DMatrixRMaj temp = new DMatrixRMaj(3, 3); DMatrixRMaj W = new DMatrixRMaj(3, 3); /** * Essential matrix can be viewed as a homogenous quantity (scale invariant) or not. If Viewed as the former then * this is the length of the translation vector */ @Getter double translationLength; public DecomposeEssential() { solutions.add(new Se3_F64()); solutions.add(new Se3_F64()); solutions.add(new Se3_F64()); solutions.add(new Se3_F64()); W.set(0, 1, -1); W.set(1, 0, 1); W.set(2, 2, 1); } /** * Computes the decomposition from an essential matrix. * * @param E essential matrix */ public boolean decompose( DMatrixRMaj E ) { if (svd.inputModified()) { E_copy.setTo(E); E = E_copy; } if (!svd.decompose(E)) return false; U = svd.getU(U, false); V = svd.getV(V, false); S = svd.getW(S); SingularOps_DDRM.descendingOrder(U, false, S, V, false); translationLength = Math.abs(S.get(0, 0) + S.get(1, 1))/2; decompose(U, V); return true; } /** * Compute the decomposition given the SVD of E=U*S*VT. * * @param U Orthogonal matrix from SVD. * @param V Orthogonal matrix from SVD. */ public void decompose( DMatrixRMaj U, DMatrixRMaj V ) { // this ensures the resulting rotation matrix will have a determinant of +1 and thus be a real rotation matrix if (CommonOps_DDRM.det(U) < 0) { CommonOps_DDRM.scale(-1, U); } if (CommonOps_DDRM.det(V) < 0) { CommonOps_DDRM.scale(-1, V); } // for possible solutions due to ambiguity in the sign of T and rotation extractTransform(U, V, solutions.get(0), true, true); extractTransform(U, V, solutions.get(1), true, false); extractTransform(U, V, solutions.get(2), false, false); extractTransform(U, V, solutions.get(3), false, true); } /** *

* Returns the four possible solutions found in the decomposition. The returned motions go from the * first into the second camera frame. *

* *

* WARNING: This list is modified on each call to decompose. Create a copy of any * solution that needs to be saved. *

* * @return Four possible solutions to the decomposition */ public List getSolutions() { return solutions; } /** * There are four possible reconstructions from an essential matrix. This function will compute different * permutations depending on optionA and optionB being true or false. */ private void extractTransform( DMatrixRMaj U, DMatrixRMaj V, Se3_F64 se, boolean optionA, boolean optionB ) { DMatrixRMaj R = se.getR(); Vector3D_F64 T = se.getT(); // extract rotation if (optionA) CommonOps_DDRM.multTransB(U, W, temp); else CommonOps_DDRM.mult(U, W, temp); CommonOps_DDRM.multTransB(temp, V, R); T.x = U.get(0, 2); T.y = U.get(1, 2); T.z = U.get(2, 2); if (optionB) T.scale(-1); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy