boofcv.alg.geo.DecomposeEssential Maven / Gradle / Ivy
Show all versions of boofcv-geo Show documentation
/*
* Copyright (c) 2022, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.geo;
import georegression.struct.point.Vector3D_F64;
import georegression.struct.se.Se3_F64;
import lombok.Getter;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.SingularOps_DDRM;
import org.ejml.dense.row.factory.DecompositionFactory_DDRM;
import org.ejml.interfaces.decomposition.SingularValueDecomposition;
import java.util.ArrayList;
import java.util.List;
/**
*
* Decomposed the essential matrix into a rigid body motion; rotation and translation. This is the rigid body
* transformation from the first camera frame into the second camera frame. A total f four possible motions
* will be found and the ambiguity can be removed by calling {@link PositiveDepthConstraintCheck} on each hypothesis.
*
*
*
* An essential matrix is defined as E=cross(T)*R, where cross(T) is a cross product matrix,
* T is translation vector, and R is a 3x3 rotation matrix.
*
*
* This decomposition follows the treatment in found in page 259 of "Multiple View Geometry in Computer Vision"
* by Richard Hartley and Andrew Zisserman.
*
* @author Peter Abeles
*/
@SuppressWarnings({"NullAway.Init"})
public class DecomposeEssential {
private final SingularValueDecomposition svd = DecompositionFactory_DDRM.svd(3, 3, true, true, false);
// storage for SVD
DMatrixRMaj U, S, V;
// storage for the four possible solutions
List solutions = new ArrayList<>();
// working copy of E
DMatrixRMaj E_copy = new DMatrixRMaj(3, 3);
// local storage used when computing a hypothesis
DMatrixRMaj temp = new DMatrixRMaj(3, 3);
DMatrixRMaj W = new DMatrixRMaj(3, 3);
/**
* Essential matrix can be viewed as a homogenous quantity (scale invariant) or not. If Viewed as the former then
* this is the length of the translation vector
*/
@Getter double translationLength;
public DecomposeEssential() {
solutions.add(new Se3_F64());
solutions.add(new Se3_F64());
solutions.add(new Se3_F64());
solutions.add(new Se3_F64());
W.set(0, 1, -1);
W.set(1, 0, 1);
W.set(2, 2, 1);
}
/**
* Computes the decomposition from an essential matrix.
*
* @param E essential matrix
*/
public boolean decompose( DMatrixRMaj E ) {
if (svd.inputModified()) {
E_copy.setTo(E);
E = E_copy;
}
if (!svd.decompose(E))
return false;
U = svd.getU(U, false);
V = svd.getV(V, false);
S = svd.getW(S);
SingularOps_DDRM.descendingOrder(U, false, S, V, false);
translationLength = Math.abs(S.get(0, 0) + S.get(1, 1))/2;
decompose(U, V);
return true;
}
/**
* Compute the decomposition given the SVD of E=U*S*VT.
*
* @param U Orthogonal matrix from SVD.
* @param V Orthogonal matrix from SVD.
*/
public void decompose( DMatrixRMaj U, DMatrixRMaj V ) {
// this ensures the resulting rotation matrix will have a determinant of +1 and thus be a real rotation matrix
if (CommonOps_DDRM.det(U) < 0) {
CommonOps_DDRM.scale(-1, U);
}
if (CommonOps_DDRM.det(V) < 0) {
CommonOps_DDRM.scale(-1, V);
}
// for possible solutions due to ambiguity in the sign of T and rotation
extractTransform(U, V, solutions.get(0), true, true);
extractTransform(U, V, solutions.get(1), true, false);
extractTransform(U, V, solutions.get(2), false, false);
extractTransform(U, V, solutions.get(3), false, true);
}
/**
*
* Returns the four possible solutions found in the decomposition. The returned motions go from the
* first into the second camera frame.
*
*
*
* WARNING: This list is modified on each call to decompose. Create a copy of any
* solution that needs to be saved.
*
*
* @return Four possible solutions to the decomposition
*/
public List getSolutions() {
return solutions;
}
/**
* There are four possible reconstructions from an essential matrix. This function will compute different
* permutations depending on optionA and optionB being true or false.
*/
private void extractTransform( DMatrixRMaj U, DMatrixRMaj V,
Se3_F64 se, boolean optionA, boolean optionB ) {
DMatrixRMaj R = se.getR();
Vector3D_F64 T = se.getT();
// extract rotation
if (optionA)
CommonOps_DDRM.multTransB(U, W, temp);
else
CommonOps_DDRM.mult(U, W, temp);
CommonOps_DDRM.multTransB(temp, V, R);
T.x = U.get(0, 2);
T.y = U.get(1, 2);
T.z = U.get(2, 2);
if (optionB)
T.scale(-1);
}
}