All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.DecomposeHomography Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo;

import georegression.geometry.GeometryMath_F64;
import georegression.struct.point.Vector3D_F64;
import georegression.struct.se.Se3_F64;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.SingularOps_DDRM;
import org.ejml.dense.row.decomposition.svd.SafeSvd_DDRM;
import org.ejml.dense.row.factory.DecompositionFactory_DDRM;
import org.ejml.interfaces.decomposition.SingularValueDecomposition;

import java.util.ArrayList;
import java.util.List;

/**
 * 

* Decomposes a homography matrix to extract its internal geometric structure. There are four possible solutions, * with two that are physically possible. The physically possible solution can be found by imposing a positive * depth constraint. See {@link PositiveDepthConstraintCheck} for details on how to do that. *

* *

* A homography matrix is defined as H = (R + (1/d)*T*NT), where R is a 3x3 rotation matrix, * d is the distance of the plane, N is the plane's normal, T is the translation vector. The decomposition * works by computing the SVD of HTH and the following the procedure outlines in [1]. *

* *

* The input homography is assumed to be from view 'a' to view 'b'. Then the resulting transform (R,T) is the * transform from view 'a' to view 'b'. The values of d and N are all from the view 'a' perspective. Since there's a * scale ambiguity the value of d is assumed to be 1 and T is scaled appropriately. *

* *

* "An Invitation to 3-D Vision" 1st edition page 137. *

* * @author Peter Abeles */ public class DecomposeHomography { private final SingularValueDecomposition svd; // storage for the four possible solutions // Camera motion part of the solution final List solutionsSE = new ArrayList<>(); // normal of the plane final List solutionsN = new ArrayList<>(); // used for internal house keeping during decomposition final Vector3D_F64 u1 = new Vector3D_F64(); final Vector3D_F64 u2 = new Vector3D_F64(); final Vector3D_F64 v2 = new Vector3D_F64(); final Vector3D_F64 tempV = new Vector3D_F64(); final DMatrixRMaj W1 = new DMatrixRMaj(3, 3); final DMatrixRMaj W2 = new DMatrixRMaj(3, 3); final DMatrixRMaj U1 = new DMatrixRMaj(3, 3); final DMatrixRMaj U2 = new DMatrixRMaj(3, 3); final DMatrixRMaj Hv2 = new DMatrixRMaj(3, 3); final DMatrixRMaj tempM = new DMatrixRMaj(3, 3); // workspace for H final DMatrixRMaj H = new DMatrixRMaj(3, 3); public DecomposeHomography() { for (int i = 0; i < 4; i++) { solutionsN.add(new Vector3D_F64()); solutionsSE.add(new Se3_F64()); } // insure that the inputs are not modified svd = new SafeSvd_DDRM(DecompositionFactory_DDRM.svd(3, 3, false, true, false)); } /** * Decomposed the provided homography matrix into its R,T/d,N components. Four * solutions will be produced and can be accessed with {@link #getSolutionsN()} and * {@link #getSolutionsSE()}. * * @param homography Homography matrix. Not modified. */ public void decompose( DMatrixRMaj homography ) { if (!svd.decompose(homography)) throw new RuntimeException("SVD failed somehow"); DMatrixRMaj V = svd.getV(null, false); DMatrixRMaj S = svd.getW(null); SingularOps_DDRM.descendingOrder(null, false, S, V, false); double s0 = S.get(0, 0); double s1 = S.get(1, 1); // This is the scale. If normalize it will be one double s2 = S.get(2, 2); // force s1 to be 1 s0 /= s1; s2 /= s1; CommonOps_DDRM.scale(1.0/s1, homography, this.H); // square s0 and s1 for other parts of the calculations s0 *= s0; s2 *= s2; v2.setTo(V.get(0, 1), V.get(1, 1), V.get(2, 1)); double a = Math.sqrt(1 - s2); double b = Math.sqrt(s0 - 1); double div = Math.sqrt(s0 - s2); for (int i = 0; i < 3; i++) { double e1 = (a*V.get(i, 0) + b*V.get(i, 2))/div; double e2 = (a*V.get(i, 0) - b*V.get(i, 2))/div; u1.setIdx(i, e1); u2.setIdx(i, e2); } setU(U1, v2, u1); setU(U2, v2, u2); setW(W1, H, v2, u1); setW(W2, H, v2, u2); // create the four solutions createSolution(W1, U1, u1, H, solutionsSE.get(0), solutionsN.get(0)); createSolution(W2, U2, u2, H, solutionsSE.get(1), solutionsN.get(1)); createMirrorSolution(0, 2); createMirrorSolution(1, 3); } /** *

* Returns the camera motion part of the solution. Note that se.T=(1/d)T *

*

* WARNING: Data is reused each time decompose is called. *

* * @return Set of rigid body camera motions */ public List getSolutionsSE() { return solutionsSE; } /** *

* Returns the normal of the plane part of the solution *

*

* WARNING: Data is reused each time decompose is called. *

* * @return Set of plane normals */ public List getSolutionsN() { return solutionsN; } /** * U=[a,b,hat(a)*b] */ private void setU( DMatrixRMaj U, Vector3D_F64 a, Vector3D_F64 b ) { setColumn(U, 0, a); setColumn(U, 1, b); GeometryMath_F64.cross(a, b, tempV); setColumn(U, 2, tempV); } /** * W=[H*a,H*b,hat(H*a)*H*b] */ private void setW( DMatrixRMaj W, DMatrixRMaj H, Vector3D_F64 a, Vector3D_F64 b ) { GeometryMath_F64.mult(H, b, tempV); setColumn(W, 1, tempV); GeometryMath_F64.mult(H, a, tempV); setColumn(W, 0, tempV); GeometryMath_F64.crossMatrix(tempV, Hv2); CommonOps_DDRM.mult(Hv2, H, tempM); GeometryMath_F64.mult(tempM, b, tempV); setColumn(W, 2, tempV); } private void setColumn( DMatrixRMaj U, int column, Vector3D_F64 a ) { U.set(0, column, a.x); U.set(1, column, a.y); U.set(2, column, a.z); } /** * R = W*U^T * N = v2 cross u * (1/d)*T = (H-R)*N */ private void createSolution( DMatrixRMaj W, DMatrixRMaj U, Vector3D_F64 u, DMatrixRMaj H, Se3_F64 se, Vector3D_F64 N ) { CommonOps_DDRM.multTransB(W, U, se.getR()); GeometryMath_F64.cross(v2, u, N); CommonOps_DDRM.subtract(H, se.getR(), tempM); GeometryMath_F64.mult(tempM, N, se.getT()); } private void createMirrorSolution( int origIndex, int index ) { Se3_F64 origSE = solutionsSE.get(origIndex); Vector3D_F64 origN = solutionsN.get(origIndex); Se3_F64 se = solutionsSE.get(index); Vector3D_F64 N = solutionsN.get(index); se.getR().setTo(origSE.getR()); N.x = -origN.x; N.y = -origN.y; N.z = -origN.z; Vector3D_F64 origT = origSE.getT(); Vector3D_F64 T = se.getT(); T.x = -origT.x; T.y = -origT.y; T.z = -origT.z; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy