All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.DecomposeProjectiveToMetric Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2020, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo;

import georegression.geometry.GeometryMath_F64;
import georegression.struct.se.Se3_F64;
import lombok.Getter;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.SpecializedOps_DDRM;
import org.ejml.dense.row.factory.DecompositionFactory_DDRM;
import org.ejml.interfaces.decomposition.QRDecomposition;
import org.ejml.interfaces.decomposition.SingularValueDecomposition_F64;

/**
 * Decomposes metric camera matrices as well as projective with known intrinsic parameters.
 *
 * @author Peter Abeles
 */
public class DecomposeProjectiveToMetric {

	// Need to do an RQ decomposition, but we only have QR
	// by permuting the rows in KR we can get the desired result
	protected QRDecomposition qr = DecompositionFactory_DDRM.qr(3, 3);
	// Pivot matrix
	protected DMatrixRMaj Pv = SpecializedOps_DDRM.pivotMatrix(null, new int[]{2, 1, 0}, 3, false);
	// Storage for A after pivots have been applied to it
	protected DMatrixRMaj A_p = new DMatrixRMaj(3, 3);

	// P = [A|a]  The left side 3x3 sub matrix in camera matrix P
	protected DMatrixRMaj A = new DMatrixRMaj(3, 3);

	protected SingularValueDecomposition_F64 svd = DecompositionFactory_DDRM.svd(true, true, true);
	// P_metric = P*H
	protected DMatrixRMaj P_metric = new DMatrixRMaj(3, 4);
	// metric camera after being multiplied by inv(K)
	protected DMatrixRMaj P_rt = new DMatrixRMaj(3, 4);
	// Storage for the inverse of the intrinic matrix K
	protected DMatrixRMaj K_inv = new DMatrixRMaj(3, 3);

	/** Indicates how far the singular values deviated from their expected value. zero means perfect match */
	public @Getter double singularError;

	/**
	 * 

* Convert the projective camera matrix into a metric transform given the rectifying homography and a * known calibration matrix. This simplifies the math compared to {@link #projectiveToMetric} where it needs * to extract `K`. *

* {@code P = K*[R|T]*H} where H is the inverse of the rectifying homography. * * A goodness of fit error can be accessed using {@link #singularError}. * * @param cameraMatrix (Input) camera matrix. 3x4 * @param H (Input) Rectifying homography. 4x4 * @param K (Input) Known calibration matrix * @param worldToView (Output) transform from world to camera view * @return true if the decomposition was successful */ public boolean projectiveToMetricKnownK( DMatrixRMaj cameraMatrix, DMatrixRMaj H, DMatrixRMaj K, Se3_F64 worldToView ) { // Reset internal data structures singularError = 0; // Elevate the projective camera into a metric camera matrix CommonOps_DDRM.mult(cameraMatrix, H, P_metric); // "Remove" K from the metric camera, e.g. P= [K*R | K*T] then inv(K)P = [R | T] CommonOps_DDRM.invert(K, K_inv); CommonOps_DDRM.mult(K_inv, P_metric, P_rt); // Remove R and T CommonOps_DDRM.extract(P_rt, 0, 0, worldToView.R); worldToView.T.x = P_rt.get(0, 3); worldToView.T.y = P_rt.get(1, 3); worldToView.T.z = P_rt.get(2, 3); // Turn R into a true rotation matrix which is orthogonal and has a determinant of +1 DMatrixRMaj R = worldToView.R; if (!svd.decompose(R)) return false; CommonOps_DDRM.multTransB(svd.getU(null, false), svd.getV(null, false), R); // determinant should be +1 double det = CommonOps_DDRM.det(R); if (det < 0) { CommonOps_DDRM.scale(-1, R); worldToView.T.scale(-1); } // recover the scale of T. This is important when trying to construct a common metric frame from a common // projective frame double[] sv = svd.getSingularValues(); double sv_mag = (sv[0] + sv[1] + sv[2])/3.0; worldToView.T.divideIP(sv_mag); // if the input preconditions are false and K was not a good fit to this metric transform then the singular // values will not all be identical for (int i = 0; i < 3; i++) { singularError += Math.abs(sv[i] - sv_mag); } return true; } /** * Elevates a projective camera matrix into a metric one using the rectifying homography. * Extracts calibration and Se3 pose. * *
	 * P'=P*H
	 * K,R,t = decompose(P')
	 * 
* where P is the camera matrix, H is the homography, (K,R,t) are the intrinsic calibration matrix, rotation, * and translation * * @param cameraMatrix (Input) camera matrix. 3x4 * @param H (Input) Rectifying homography. 4x4 * @param worldToView (Output) Transform from world to camera view * @param K (Output) Camera calibration matrix * @see MultiViewOps#absoluteQuadraticToH * @see #decomposeMetricCamera(DMatrixRMaj, DMatrixRMaj, Se3_F64) */ public boolean projectiveToMetric( DMatrixRMaj cameraMatrix, DMatrixRMaj H, Se3_F64 worldToView, DMatrixRMaj K ) { CommonOps_DDRM.mult(cameraMatrix, H, P_metric); return decomposeMetricCamera(P_metric, K, worldToView); } /** *

* Decomposes a metric camera matrix P=K*[R|T], where A is an upper triangular camera calibration * matrix, R is a rotation matrix, and T is a translation vector. If {@link PerspectiveOps#createCameraMatrix} * is called using the returned value you will get an equivalent camera matrix. *

* *
    *
  • NOTE: There are multiple valid solutions to this problem and only one solution is returned. *
  • NOTE: The camera center will be on the plane at infinity. *
* * @param cameraMatrix Input: Camera matrix, 3 by 4 * @param K Output: Camera calibration matrix, 3 by 3. * @param worldToView Output: The rotation and translation. * @return true if decompose was successful */ public boolean decomposeMetricCamera( DMatrixRMaj cameraMatrix, DMatrixRMaj K, Se3_F64 worldToView ) { CommonOps_DDRM.extract(cameraMatrix, 0, 3, 0, 3, A, 0, 0); worldToView.T.setTo(cameraMatrix.get(0, 3), cameraMatrix.get(1, 3), cameraMatrix.get(2, 3)); CommonOps_DDRM.mult(Pv, A, A_p); CommonOps_DDRM.transpose(A_p); if (!qr.decompose(A_p)) return false; // extract the rotation using RQ decomposition (via a pivoted QR) qr.getQ(A, false); CommonOps_DDRM.multTransB(Pv, A, worldToView.R); // extract the calibration matrix qr.getR(K, false); CommonOps_DDRM.multTransB(Pv, K, A); CommonOps_DDRM.mult(A, Pv, K); // there are four solutions, massage it so that it's the correct one. // each of these row/column negations produces the same camera matrix for (int i = 0; i < 3; i++) { if (K.get(i, i) < 0) { CommonOps_DDRM.scaleCol(-1, K, i); CommonOps_DDRM.scaleRow(-1, worldToView.R, i); } } // rotation matrices have det() == 1 if (CommonOps_DDRM.det(worldToView.R) < 0) { CommonOps_DDRM.scale(-1, worldToView.R); worldToView.T.scale(-1); } // save the scale so that T is scaled correctly. This is important when upgrading common projective cameras double scale = K.get(2, 2); // make sure it's a proper camera matrix and this is more numerically stable to invert CommonOps_DDRM.divide(K, scale); // could do a very fast triangulate inverse. EJML doesn't have one for upper triangle, yet. if (!CommonOps_DDRM.invert(K, A)) return false; GeometryMath_F64.mult(A, worldToView.T, worldToView.T); worldToView.T.divide(scale); return true; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy