All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.MultiViewOps Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2022, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo;

import boofcv.abst.geo.TriangulateNViewsMetricH;
import boofcv.abst.geo.bundle.BundleAdjustmentCamera;
import boofcv.abst.geo.bundle.SceneObservations;
import boofcv.abst.geo.bundle.SceneStructureCommon;
import boofcv.abst.geo.bundle.SceneStructureMetric;
import boofcv.alg.distort.brown.RemoveBrownPtoN_F64;
import boofcv.alg.geo.bundle.cameras.BundlePinhole;
import boofcv.alg.geo.bundle.cameras.BundlePinholeBrown;
import boofcv.alg.geo.bundle.cameras.BundlePinholeSimplified;
import boofcv.alg.geo.f.FundamentalExtractEpipoles;
import boofcv.alg.geo.f.FundamentalToProjective;
import boofcv.alg.geo.h.HomographyInducedStereo2Line;
import boofcv.alg.geo.h.HomographyInducedStereo3Pts;
import boofcv.alg.geo.h.HomographyInducedStereoLinePt;
import boofcv.alg.geo.impl.ProjectiveToIdentity;
import boofcv.alg.geo.structure.DecomposeAbsoluteDualQuadratic;
import boofcv.alg.geo.trifocal.TrifocalExtractGeometries;
import boofcv.alg.geo.trifocal.TrifocalTransfer;
import boofcv.factory.geo.ConfigTriangulation;
import boofcv.factory.geo.FactoryMultiView;
import boofcv.misc.BoofLambdas;
import boofcv.misc.BoofMiscOps;
import boofcv.struct.calib.CameraPinhole;
import boofcv.struct.geo.*;
import georegression.geometry.GeometryMath_F64;
import georegression.geometry.UtilLine2D_F64;
import georegression.geometry.UtilPoint3D_F64;
import georegression.metric.Intersection2D_F64;
import georegression.struct.GeoTuple3D_F64;
import georegression.struct.line.LineGeneral2D_F64;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point3D_F64;
import georegression.struct.point.Point4D_F64;
import georegression.struct.point.Vector3D_F64;
import georegression.struct.se.Se3_F64;
import georegression.transform.se.SePointOps_F64;
import org.ddogleg.struct.DogArray;
import org.ddogleg.struct.DogArray_F64;
import org.ddogleg.struct.Tuple2;
import org.ddogleg.struct.Tuple3;
import org.ejml.UtilEjml;
import org.ejml.data.DMatrix3;
import org.ejml.data.DMatrix3x3;
import org.ejml.data.DMatrix4x4;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.fixed.CommonOps_DDF4;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.NormOps_DDRM;
import org.ejml.dense.row.SingularOps_DDRM;
import org.ejml.dense.row.factory.DecompositionFactory_DDRM;
import org.ejml.interfaces.decomposition.SingularValueDecomposition_F64;
import org.jetbrains.annotations.Nullable;

import java.util.ArrayList;
import java.util.List;
import java.util.Objects;

/**
 * 

* Contains commonly used operations used in 2-view and 3-view perspective geometry. *

* *

* LINES: lines on the image place are represented in homogeneous or generic form as a 3D vector. If a point in * homogeneous coordinates is on a line and the dot product is computed the result will be zero. *

* * @author Peter Abeles */ public class MultiViewOps { /** *

* Creates a trifocal tensor from two camera matrices. Tijk = a[j,i]*b[k,3] - a[j,3]*b[k,i], * where a=P2 and b=P3. *

* *

* IMPORTANT: It is assumed that the first camera has the following camera matrix P1 = [I|0], * where I is an identify matrix. *

* * @param P2 Camera matrix for view 2. 3x4 matrix * @param P3 Camera matrix for view 3. 3x4 matrix * @param ret Storage for trifocal tensor. If null a new instance will be created. * @return The trifocal tensor */ public static TrifocalTensor createTrifocal( DMatrixRMaj P2, DMatrixRMaj P3, @Nullable TrifocalTensor ret ) { if (ret == null) ret = new TrifocalTensor(); for (int i = 0; i < 3; i++) { DMatrixRMaj T = ret.getT(i); int index = 0; for (int j = 0; j < 3; j++) { double a_left = P2.get(j, i); double a_right = P2.get(j, 3); for (int k = 0; k < 3; k++) { T.data[index++] = a_left*P3.get(k, 3) - a_right*P3.get(k, i); } } } return ret; } /** *

* Creates a trifocal tensor from three camera matrices. The *

*

* Page 415 in R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003 *

* *

* WARNING: This method of creating a trifocal tensor might be numerically less accurate. A unit test had to be * changed which used this method to use another approach to constructing the tensor because it was failing even * with perfect data. With some thought this issue could be fixed. *

* * @param P1 Camera matrix for view 1. 3x4 matrix * @param P2 Camera matrix for view 2. 3x4 matrix * @param P3 Camera matrix for view 3. 3x4 matrix * @param ret Storage for trifocal tensor. If null a new instance will be created. * @return The trifocal tensor */ public static TrifocalTensor createTrifocal( DMatrixRMaj P1, DMatrixRMaj P2, DMatrixRMaj P3, @Nullable TrifocalTensor ret ) { if (ret == null) ret = new TrifocalTensor(); // invariant to scale. So pick something more reasonable and maybe reduce overflow double scale = 1; scale = Math.max(scale, CommonOps_DDRM.elementMaxAbs(P1)); scale = Math.max(scale, CommonOps_DDRM.elementMaxAbs(P2)); scale = Math.max(scale, CommonOps_DDRM.elementMaxAbs(P3)); DMatrixRMaj A = new DMatrixRMaj(4, 4); double sign = 1; for (int i = 0; i < 3; i++) { DMatrixRMaj T = ret.getT(i); for (int row = 0, cnt = 0; row < 3; row++) { if (row != i) { CommonOps_DDRM.extract(P1, row, row + 1, 0, 4, A, cnt, 0); for (int col = 0; col < 4; col++) { A.data[cnt*4 + col] /= scale; } cnt++; } } for (int q = 0; q < 3; q++) { CommonOps_DDRM.extract(P2, q, q + 1, 0, 4, A, 2, 0); for (int col = 0; col < 4; col++) { A.data[2*4 + col] /= scale; } for (int r = 0; r < 3; r++) { CommonOps_DDRM.extract(P3, r, r + 1, 0, 4, A, 3, 0); for (int col = 0; col < 4; col++) { A.data[3*4 + col] /= scale; } double v = CommonOps_DDRM.det(A); T.set(q, r, sign*v*scale); // scale is to the power of 2, hence the *scale here } } sign *= -1; } return ret; } /** *

* Creates a trifocal tensor from two rigid body motions. This is for the calibrated camera case. *

* *

* NOTE: View 1 is the world coordinate system, i.e. [I|0] *

* * @param P2 Transform from view 1 to view 2. * @param P3 Transform from view 1 to view 3. * @param ret Storage for trifocal tensor. If null a new instance will be created. * @return The trifocal tensor */ public static TrifocalTensor createTrifocal( Se3_F64 P2, Se3_F64 P3, @Nullable TrifocalTensor ret ) { if (ret == null) ret = new TrifocalTensor(); DMatrixRMaj R2 = P2.getR(); DMatrixRMaj R3 = P3.getR(); Vector3D_F64 T2 = P2.getT(); Vector3D_F64 T3 = P3.getT(); for (int col = 0; col < 3; col++) { DMatrixRMaj T = ret.getT(col); int index = 0; for (int i = 0; i < 3; i++) { double a_left = R2.unsafe_get(i, col); double a_right = T2.getIdx(i); for (int j = 0; j < 3; j++) { T.data[index++] = a_left*T3.getIdx(j) - a_right*R3.unsafe_get(j, col); } } } return ret; } /** *

* Trifocal tensor with line-line-line correspondence:
* (l2T*[T1,T2,T3]*L2)*[l1]x = 0 *

* * @param tensor Trifocal tensor * @param l1 A line in the first view. * @param l2 A line in the second view. * @param l3 A line in the third view. * @param ret Storage for output. If null a new instance will be declared. * @return Result of applying the constraint. With perfect inputs will be zero. */ public static Vector3D_F64 constraint( TrifocalTensor tensor, Vector3D_F64 l1, Vector3D_F64 l2, Vector3D_F64 l3, @Nullable Vector3D_F64 ret ) { if (ret == null) ret = new Vector3D_F64(); double x = GeometryMath_F64.innerProd(l2, tensor.T1, l3); double y = GeometryMath_F64.innerProd(l2, tensor.T2, l3); double z = GeometryMath_F64.innerProd(l2, tensor.T3, l3); GeometryMath_F64.cross(new Vector3D_F64(x, y, z), l1, ret); return ret; } /** *

* Trifocal tensor with point-line-line correspondence:
* (l2T*(sum p1i*Ti)*l3 = 0 *

* * @param tensor Trifocal tensor * @param p1 A point in the first view. * @param l2 A line in the second view. * @param l3 A line in the third view. * @return Result of applying the constraint. With perfect inputs will be zero. */ public static double constraint( TrifocalTensor tensor, Point2D_F64 p1, Vector3D_F64 l2, Vector3D_F64 l3 ) { DMatrixRMaj sum = new DMatrixRMaj(3, 3); CommonOps_DDRM.add(p1.x, tensor.T1, sum, sum); CommonOps_DDRM.add(p1.y, tensor.T2, sum, sum); CommonOps_DDRM.add(tensor.T3, sum, sum); return GeometryMath_F64.innerProd(l2, sum, l3); } /** *

* Trifocal tensor with point-line-point correspondence:
* (l2T(sum p1i*Ti)[p3]x = 0 *

* * @param tensor Trifocal tensor * @param p1 A point in the first view. * @param l2 A line in the second view. * @param p3 A point in the third view. * @return Result of applying the constraint. With perfect inputs will be zero. */ public static Vector3D_F64 constraint( TrifocalTensor tensor, Point2D_F64 p1, Vector3D_F64 l2, Point2D_F64 p3, Vector3D_F64 ret ) { if (ret == null) ret = new Vector3D_F64(); DMatrixRMaj sum = new DMatrixRMaj(3, 3); CommonOps_DDRM.add(p1.x, tensor.T1, sum, sum); CommonOps_DDRM.add(p1.y, tensor.T2, sum, sum); CommonOps_DDRM.add(tensor.T3, sum, sum); Vector3D_F64 tempV = new Vector3D_F64(); GeometryMath_F64.multTran(sum, l2, tempV); GeometryMath_F64.cross(tempV, new Vector3D_F64(p3.x, p3.y, 1), ret); return ret; } /** *

* Trifocal tensor with point-point-line correspondence:
* [p2]x(sum p1i*Ti)*l3 = 0 *

* * @param tensor Trifocal tensor * @param p1 A point in the first view. * @param p2 A point in the second view. * @param l3 A line in the third view. * @return Result of applying the constraint. With perfect inputs will be zero. */ public static Vector3D_F64 constraint( TrifocalTensor tensor, Point2D_F64 p1, Point2D_F64 p2, Vector3D_F64 l3, Vector3D_F64 ret ) { if (ret == null) ret = new Vector3D_F64(); DMatrixRMaj sum = new DMatrixRMaj(3, 3); CommonOps_DDRM.add(p1.x, tensor.T1, sum, sum); CommonOps_DDRM.add(p1.y, tensor.T2, sum, sum); CommonOps_DDRM.add(tensor.T3, sum, sum); DMatrixRMaj cross2 = GeometryMath_F64.crossMatrix(p2.x, p2.y, 1, null); DMatrixRMaj temp = new DMatrixRMaj(3, 3); CommonOps_DDRM.mult(cross2, sum, temp); GeometryMath_F64.mult(temp, l3, ret); return ret; } /** *

* Trifocal tensor with point-point-point correspondence:
* [p2]x(sum p1i*Ti)[p3]x = 0 *

* * @param tensor Trifocal tensor * @param p1 A point in the first view. * @param p2 A point in the second view. * @param p3 A point in the third view. * @param ret Optional storage for output. 3x3 matrix. Modified. * @return Result of applying the constraint. With perfect inputs will be zero. */ public static DMatrixRMaj constraint( TrifocalTensor tensor, Point2D_F64 p1, Point2D_F64 p2, Point2D_F64 p3, DMatrixRMaj ret ) { if (ret == null) ret = new DMatrixRMaj(3, 3); DMatrixRMaj sum = new DMatrixRMaj(3, 3); CommonOps_DDRM.add(p1.x, tensor.T1, p1.y, tensor.T2, sum); CommonOps_DDRM.add(sum, tensor.T3, sum); DMatrixRMaj cross2 = GeometryMath_F64.crossMatrix(p2.x, p2.y, 1, null); DMatrixRMaj cross3 = GeometryMath_F64.crossMatrix(p3.x, p3.y, 1, null); DMatrixRMaj temp = new DMatrixRMaj(3, 3); CommonOps_DDRM.mult(cross2, sum, temp); CommonOps_DDRM.mult(temp, cross3, ret); return ret; } /** *

* Applies the epipolar relationship constraint to an essential or fundamental matrix:
* 0 = p2T*F*p1
* Input points are in normalized image coordinates for an essential matrix and pixels for * fundamental. *

* * @param F 3x3 essential or fundamental matrix. * @param p1 Point in view 1. * @param p2 Point in view 2. * @return Constraint value. */ public static double constraint( DMatrixRMaj F, Point2D_F64 p1, Point2D_F64 p2 ) { return GeometryMath_F64.innerProd(p2, F, p1); } /** *

* Applies the homography constraints to two points:
* z*p2 = H*p1
* where z is a scale factor and (p1,p2) are point observations. Note that since 2D points are inputted * translation and normalization to homogeneous coordinates with z=1 is automatically handled. *

* * @param H Input: 3x3 Homography matrix. * @param p1 Input: Point in view 1. * @param outputP2 Output: storage for point in view 2. * @return Predicted point in view 2 */ public static Point2D_F64 constraintHomography( DMatrixRMaj H, Point2D_F64 p1, Point2D_F64 outputP2 ) { if (outputP2 == null) outputP2 = new Point2D_F64(); GeometryMath_F64.mult(H, p1, outputP2); return outputP2; } /** * Computes the homography induced from view 1 to 3 by a line in view 2. The provided line in * view 2 must contain the view 2 observation. * * p3 = H13*p1 * * @param tensor Input: Trifocal tensor * @param line2 Input: Line in view 2. {@link LineGeneral2D_F64 General notation}. * @param output Output: Optional storage for homography. 3x3 matrix * @return Homography from view 1 to 3 */ public static DMatrixRMaj inducedHomography13( TrifocalTensor tensor, Vector3D_F64 line2, DMatrixRMaj output ) { if (output == null) output = new DMatrixRMaj(3, 3); DMatrixRMaj T = tensor.T1; // H(:,0) = transpose(T1)*line output.data[0] = T.data[0]*line2.x + T.data[3]*line2.y + T.data[6]*line2.z; output.data[3] = T.data[1]*line2.x + T.data[4]*line2.y + T.data[7]*line2.z; output.data[6] = T.data[2]*line2.x + T.data[5]*line2.y + T.data[8]*line2.z; // H(:,1) = transpose(T2)*line T = tensor.T2; output.data[1] = T.data[0]*line2.x + T.data[3]*line2.y + T.data[6]*line2.z; output.data[4] = T.data[1]*line2.x + T.data[4]*line2.y + T.data[7]*line2.z; output.data[7] = T.data[2]*line2.x + T.data[5]*line2.y + T.data[8]*line2.z; // H(:,2) = transpose(T3)*line T = tensor.T3; output.data[2] = T.data[0]*line2.x + T.data[3]*line2.y + T.data[6]*line2.z; output.data[5] = T.data[1]*line2.x + T.data[4]*line2.y + T.data[7]*line2.z; output.data[8] = T.data[2]*line2.x + T.data[5]*line2.y + T.data[8]*line2.z; // Vector3D_F64 temp = new Vector3D_F64(); // // for( int i = 0; i < 3; i++ ) { // GeometryMath_F64.multTran(tensor.getT(i),line,temp); // output.unsafe_set(0,i,temp.x); // output.unsafe_set(1,i,temp.y); // output.unsafe_set(2,i,temp.z); // } return output; } /** * Computes the homography induced from view 1 to 2 by a line in view 3. The provided line in * view 3 must contain the view 3 observation. * * p2 = H12*p1 * * @param tensor Input: Trifocal tensor * @param line3 Input: Line in view 3. {@link LineGeneral2D_F64 General notation}. * @param output Output: Optional storage for homography. 3x3 matrix * @return Homography from view 1 to 2 */ public static DMatrixRMaj inducedHomography12( TrifocalTensor tensor, Vector3D_F64 line3, DMatrixRMaj output ) { if (output == null) output = new DMatrixRMaj(3, 3); // H(:,0) = T1*line DMatrixRMaj T = tensor.T1; output.data[0] = T.data[0]*line3.x + T.data[1]*line3.y + T.data[2]*line3.z; output.data[3] = T.data[3]*line3.x + T.data[4]*line3.y + T.data[5]*line3.z; output.data[6] = T.data[6]*line3.x + T.data[7]*line3.y + T.data[8]*line3.z; // H(:,0) = T2*line T = tensor.T2; output.data[1] = T.data[0]*line3.x + T.data[1]*line3.y + T.data[2]*line3.z; output.data[4] = T.data[3]*line3.x + T.data[4]*line3.y + T.data[5]*line3.z; output.data[7] = T.data[6]*line3.x + T.data[7]*line3.y + T.data[8]*line3.z; // H(:,0) = T3*line T = tensor.T3; output.data[2] = T.data[0]*line3.x + T.data[1]*line3.y + T.data[2]*line3.z; output.data[5] = T.data[3]*line3.x + T.data[4]*line3.y + T.data[5]*line3.z; output.data[8] = T.data[6]*line3.x + T.data[7]*line3.y + T.data[8]*line3.z; // Vector3D_F64 temp = new Vector3D_F64(); // // for( int i = 0; i < 3; i++ ) { // GeometryMath_F64.mult(tensor.getT(i), line, temp); // output.unsafe_set(0,i,temp.x); // output.unsafe_set(1,i,temp.y); // output.unsafe_set(2,i,temp.z); // } return output; } /** * Computes the homography induced from a planar surface when viewed from two views using correspondences * of three points. Observations must be on the planar surface. * *

WARNING: As implemented, it seems to have stability issues or a bug. See code for comments. Please fix * and update unit test.

* * @param F Fundamental matrix * @param p1 Associated point observation * @param p2 Associated point observation * @param p3 Associated point observation * @return The homography from view 1 to view 2 or null if it fails * @see boofcv.alg.geo.h.HomographyInducedStereo3Pts */ public static @Nullable DMatrixRMaj fundamentalToHomography3Pts( DMatrixRMaj F, AssociatedPair p1, AssociatedPair p2, AssociatedPair p3 ) { HomographyInducedStereo3Pts alg = new HomographyInducedStereo3Pts(); alg.setFundamental(F, null); if (!alg.process(p1, p2, p3)) return null; return alg.getHomography(); } /** * Computes the homography induced from a planar surface when viewed from two views using correspondences * of a line and a point. Observations must be on the planar surface. * * @param F Fundamental matrix * @param line Line on the plane * @param point Point on the plane * @return The homography from view 1 to view 2 or null if it fails * @see HomographyInducedStereoLinePt */ public static DMatrixRMaj fundamentalToHomographyLinePt( DMatrixRMaj F, PairLineNorm line, AssociatedPair point ) { HomographyInducedStereoLinePt alg = new HomographyInducedStereoLinePt(); alg.setFundamental(F, null); alg.process(line, point); return alg.getHomography(); } /** * Computes the homography induced from a planar surface when viewed from two views using correspondences * of two lines. Observations must be on the planar surface. * * @param F Fundamental matrix * @param line0 Line on the plane * @param line1 Line on the plane * @return The homography from view 1 to view 2 or null if it fails * @see HomographyInducedStereo2Line */ public static @Nullable DMatrixRMaj fundamentalToHomography2Lines( DMatrixRMaj F, PairLineNorm line0, PairLineNorm line1 ) { HomographyInducedStereo2Line alg = new HomographyInducedStereo2Line(); alg.setFundamental(F, null); if (!alg.process(line0, line1)) return null; return alg.getHomography(); } /** *

* Computes the epipoles of the first camera in the second and third images. Epipoles are found * in homogeneous coordinates and have a norm of 1. *

* *

* Properties: *

    *
  • e2T*F12 = 0 *
  • e3T*F13 = 0 *
* where F1i is a fundamental matrix from image 1 to i. *

* * @param tensor Trifocal tensor. Not Modified * @param e2 Output: Epipole in image 2. Homogeneous coordinates. Modified * @param e3 Output: Epipole in image 3. Homogeneous coordinates. Modified * @see TrifocalExtractGeometries */ public static void extractEpipoles( TrifocalTensor tensor, Point3D_F64 e2, Point3D_F64 e3 ) { TrifocalExtractGeometries e = new TrifocalExtractGeometries(); e.setTensor(tensor); e.extractEpipoles(e2, e3); } /** *

* Extract the fundamental matrices between views 1 + 2 and views 1 + 3. The returned Fundamental * matrices will have the following properties: xiT*Fi*x1 = 0, where i is view 2 or 3. *

* *

* NOTE: The first camera is assumed to have the camera matrix of P1 = [I|0]. Thus observations in pixels for * the first camera will not meet the epipolar constraint when applied to the returned fundamental matrices. *

* * @param tensor Trifocal tensor. Not modified. * @param F21 Output: Fundamental matrix for views 1 and 2. Modified. * @param F31 Output: Fundamental matrix for views 1 and 3. Modified. * @see TrifocalExtractGeometries */ public static void trifocalToFundamental( TrifocalTensor tensor, DMatrixRMaj F21, DMatrixRMaj F31 ) { TrifocalExtractGeometries e = new TrifocalExtractGeometries(); e.setTensor(tensor); e.extractFundmental(F21, F31); } /** *

* Extract the camera matrices up to a common projective transform. *

* *

* NOTE: The camera matrix for the first view is assumed to be P1 = [I|0]. *

* * @param tensor Trifocal tensor. Not modified. * @param P2 Output: 3x4 camera matrix for views 1 to 2. Modified. * @param P3 Output: 3x4 camera matrix for views 1 to 3. Modified. * @see TrifocalExtractGeometries */ public static void trifocalToCameraMatrices( TrifocalTensor tensor, DMatrixRMaj P2, DMatrixRMaj P3 ) { TrifocalExtractGeometries e = new TrifocalExtractGeometries(); e.setTensor(tensor); e.extractCamera(P2, P3); } /** *

* Computes an essential matrix from a rotation and translation. This motion * is the motion from the first camera frame into the second camera frame. The essential * matrix 'E' is defined as:
* E = hat(T)*R
* where hat(T) is the skew symmetric cross product matrix for vector T. *

* * @param R Rotation matrix. * @param T Translation vector. * @param E (Output) Storage for essential matrix. 3x3 matrix * @return Essential matrix */ public static DMatrixRMaj createEssential( DMatrixRMaj R, Vector3D_F64 T, @Nullable DMatrixRMaj E ) { if (E == null) E = new DMatrixRMaj(3, 3); DMatrixRMaj T_hat = GeometryMath_F64.crossMatrix(T, null); CommonOps_DDRM.mult(T_hat, R, E); return E; } /** * Computes a Fundamental matrix given an Essential matrix and the camera calibration matrix. * * F = (K-1)T*E*K-1 * * @param E Essential matrix * @param K Intrinsic camera calibration matrix * @return Fundamental matrix */ public static DMatrixRMaj createFundamental( DMatrixRMaj E, DMatrixRMaj K ) { DMatrixRMaj K_inv = new DMatrixRMaj(3, 3); CommonOps_DDRM.invert(K, K_inv); DMatrixRMaj F = new DMatrixRMaj(3, 3); PerspectiveOps.multTranA(K_inv, E, K_inv, F); return F; } /** * Computes a Fundamental matrix given an Essential matrix and the camera's intrinsic * parameters. * * @param E Essential matrix * @param intrinsic Intrinsic camera calibration * @return Fundamental matrix * @see #createFundamental(DMatrixRMaj, DMatrixRMaj) */ public static DMatrixRMaj createFundamental( DMatrixRMaj E, CameraPinhole intrinsic ) { DMatrixRMaj K = PerspectiveOps.pinholeToMatrix(intrinsic, (DMatrixRMaj)null); return createFundamental(E, K); } /** * Computes a Fundamental matrix given an Essential matrix and the camera calibration matrix. * * F = (K2-1)T*E*K1-1 * * @param E Essential matrix * @param K1 Intrinsic camera calibration matrix for camera 1 * @param K2 Intrinsic camera calibration matrix for camera 2 * @return Fundamental matrix */ public static DMatrixRMaj createFundamental( DMatrixRMaj E, DMatrixRMaj K1, DMatrixRMaj K2 ) { DMatrixRMaj K1_inv = new DMatrixRMaj(3, 3); CommonOps_DDRM.invert(K1, K1_inv); DMatrixRMaj K2_inv = new DMatrixRMaj(3, 3); CommonOps_DDRM.invert(K2, K2_inv); DMatrixRMaj F = new DMatrixRMaj(3, 3); DMatrixRMaj temp = new DMatrixRMaj(3, 3); CommonOps_DDRM.multTransA(K2_inv, E, temp); CommonOps_DDRM.mult(temp, K1_inv, F); return F; } /** *

* Computes an fudamental matrix from a rotation, translation, and calibration matrix. Motion * is from the first camera frame into the second camera frame. *

* * @param R Rotation matrix. first to second * @param T Translation vector. first to second * @param K1 Intrinsic camera calibration matrix for camera 1 * @param K2 Intrinsic camera calibration matrix for camera 2 * @param F (Output) Storage for essential matrix. 3x3 matrix * @return Essential matrix */ public static DMatrixRMaj createFundamental( DMatrixRMaj R, Vector3D_F64 T, DMatrixRMaj K1, DMatrixRMaj K2, @Nullable DMatrixRMaj F ) { if (F == null) F = new DMatrixRMaj(3, 3); else F.reshape(3, 3); createEssential(R, T, F); F.setTo(createFundamental(F, K1, K2)); return F; } /** *

* Computes a homography matrix from a rotation, translation, plane normal and plane distance:
* x[2] = H*x[1]
* where x[1] is the point on the first camera and x[2] the location in the second camera.
* H = R+(1/d)*T*NT
* Where [R,T] is the transform from camera 1 to camera 2. *

* * @param R Rotation matrix from camera 1 to camera 2. * @param T Translation vector from camera 1 to camera 2. * @param d Distance > 0 of closest point on plane to the origin of camera 1. * @param N Normal of plane with respect to the first camera. * @return Calibrated homography matrix */ public static DMatrixRMaj createHomography( DMatrixRMaj R, Vector3D_F64 T, double d, Vector3D_F64 N ) { DMatrixRMaj H = new DMatrixRMaj(3, 3); GeometryMath_F64.outerProd(T, N, H); CommonOps_DDRM.divide(H, d); CommonOps_DDRM.addEquals(H, R); return H; } /** *

* Computes a homography matrix from a rotation, translation, plane normal, plane distance, and * calibration matrix:
* x[2] = H*x[1]
* where x[1] is the point on the first camera and x[2] the location in the second camera.
* H = K*(R+(1/d)*T*NT)*K-1
* Where [R,T] is the transform from camera 1 to camera, and K is the calibration matrix for both cameras. *

* * @param R Rotation matrix from camera 1 to camera 2. * @param T Translation vector from camera 1 to camera 2. * @param d Distance > 0 of closest point on plane to the origin of camera 1. * @param N Normal of plane with respect to the first camera. * @param K Intrinsic calibration matrix * @return Uncalibrated homography matrix */ public static DMatrixRMaj createHomography( DMatrixRMaj R, Vector3D_F64 T, double d, Vector3D_F64 N, DMatrixRMaj K ) { DMatrixRMaj temp = new DMatrixRMaj(3, 3); DMatrixRMaj K_inv = new DMatrixRMaj(3, 3); DMatrixRMaj H = createHomography(R, T, d, N); // apply calibration matrix to R CommonOps_DDRM.mult(K, H, temp); CommonOps_DDRM.invert(K, K_inv); CommonOps_DDRM.mult(temp, K_inv, H); return H; } /** *

* Extracts the epipoles from an essential or fundamental matrix. The epipoles are extracted * from the left and right null space of the provided matrix. Note that the found epipoles are * in homogeneous coordinates. If the epipole is at infinity then z=0 *

* *

* Left: e2T*F = 0
* Right: F*e1 = 0 *

* * @param F Input: Fundamental or Essential 3x3 matrix. Not modified. * @param e1 Output: Right epipole in homogeneous coordinates. Can be null. Modified. * @param e2 Output: Left epipole in homogeneous coordinates. Can be null. Modified. */ public static void extractEpipoles( DMatrixRMaj F, Point3D_F64 e1, Point3D_F64 e2 ) { FundamentalExtractEpipoles alg = new FundamentalExtractEpipoles(); alg.process(F, e1, e2); } /** *

* Given a fundamental matrix a pair of camera matrices P and P1' are extracted. The camera matrices * are 3 by 4 and used to project a 3D homogenous point onto the image plane. These camera matrices will only * be known up to a projective transform, thus there are multiple solutions, The canonical camera * matrix is defined as:
*

	 * P=[I|0] and P'= [M|-M*t] = [[e']*F + e'*v^t | lambda*e']
	 * 
* where e' is the epipole FTe' = 0, [e'] is the cross product matrix for the enclosed vector, * v is an arbitrary 3-vector and lambda is a non-zero scalar. *

* *

* NOTE: Additional information is needed to upgrade this projective transform into a metric transform. *

*

* Page 256 in R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003 *

* * @param F (Input) A fundamental matrix * @param e2 (Input) Left epipole of fundamental matrix, FT*e2 = 0. * @param v (Input) Arbitrary 3-vector. Just pick some value, say (0,0,0). * @param lambda (Input) A non zero scalar. Try one. * @return The canonical camera (projection) matrix P' (3 by 4) Known up to a projective transform. * @see #extractEpipoles * @see FundamentalToProjective */ public static DMatrixRMaj fundamentalToProjective( DMatrixRMaj F, Point3D_F64 e2, Vector3D_F64 v, double lambda ) { FundamentalToProjective f2p = new FundamentalToProjective(); DMatrixRMaj P = new DMatrixRMaj(3, 4); f2p.twoView(F, e2, v, lambda, P); return P; } /** *

Given two general camera matrices compute fundamental matrix.

* * {@code F= [e']_x P2*P1+, where P1+ is the pseudo inverse of P1, and e' = P2*C, with P*C=0} * * @param P1 (Input) camera matrix for view 1 * @param P2 (Input) camera matrix for view 2 * @param F21 (Output) Fundamental matrix from view 1 to 2 * @return Fundamental matrix. */ public static DMatrixRMaj projectiveToFundamental( DMatrixRMaj P1, DMatrixRMaj P2, @Nullable DMatrixRMaj F21 ) { if (F21 == null) F21 = new DMatrixRMaj(3, 3); ProjectiveToIdentity p2i = new ProjectiveToIdentity(); if (!p2i.process(P1)) throw new RuntimeException("Failed!"); DMatrixRMaj P1inv = p2i.getPseudoInvP(); DMatrixRMaj U = p2i.getU(); DMatrixRMaj e = new DMatrixRMaj(3, 1); CommonOps_DDRM.mult(P2, U, e); DMatrixRMaj tmp = new DMatrixRMaj(3, 4); DMatrixRMaj e_skew = new DMatrixRMaj(3, 3); GeometryMath_F64.crossMatrix(e.data[0], e.data[1], e.data[2], e_skew); CommonOps_DDRM.mult(e_skew, P2, tmp); CommonOps_DDRM.mult(tmp, P1inv, F21); return F21; } /** *

Given an implicit P1=[I|0] camera matrix and P2 compute a fundamental matrix.

* * {@code F= [e']_x P2*P1+, where P1+ is the pseudo inverse of P1, and e' = P2*C, with P*C=0} * * @param P2 (Input) camera matrix for view 2 * @param F21 (Output) Fundamental matrix from view 1 to 2 * @return Fundamental matrix. */ public static DMatrixRMaj projectiveToFundamental( DMatrixRMaj P2, @Nullable DMatrixRMaj F21 ) { if (F21 == null) F21 = new DMatrixRMaj(3, 3); // P2 = [A|b] // Since P1 = [I|0] F then becomes cross(b)*A // Extract sub matrices from P2 // Do all the math by hand to avoid memory creation. This is relatively simple double b1 = P2.unsafe_get(0, 3); double b2 = P2.unsafe_get(1, 3); double b3 = P2.unsafe_get(2, 3); double a11 = P2.data[0], a12 = P2.data[1], a13 = P2.data[2]; double a21 = P2.data[4], a22 = P2.data[5], a23 = P2.data[6]; double a31 = P2.data[8], a32 = P2.data[9], a33 = P2.data[10]; // matrix multiplication below F21.data[0] = -b3*a21 + b2*a31; F21.data[1] = -b3*a22 + b2*a32; F21.data[2] = -b3*a23 + b2*a33; F21.data[3] = b3*a11 - b1*a31; F21.data[4] = b3*a12 - b1*a32; F21.data[5] = b3*a13 - b1*a33; F21.data[6] = -b2*a11 + b1*a21; F21.data[7] = -b2*a12 + b1*a22; F21.data[8] = -b2*a13 + b1*a23; return F21; } /** *

* Given a fundamental matrix a pair of camera matrices P0 and P1 can be extracted. Same * {@link #fundamentalToProjective(DMatrixRMaj, Point3D_F64, Vector3D_F64, double)} but with the suggested values * for all variables filled in for you. *

* * @param F (Input) Fundamental Matrix * @return The canonical camera (projection) matrix P' (3 by 4) Known up to a projective transform. * @see FundamentalToProjective */ public static DMatrixRMaj fundamentalToProjective( DMatrixRMaj F ) { FundamentalToProjective f2p = new FundamentalToProjective(); DMatrixRMaj P = new DMatrixRMaj(3, 4); f2p.twoView(F, P); return P; } /** * Given the calibration matrix, convert the fundamental matrix into an essential matrix. E = K'*F*k. The * singular values of the resulting E matrix are forced to be [1,1,0] * * @param F (Input) Fundamental matrix. 3x3 * @param K (Input) Calibration matrix (3x3) * @param outputE (Output) Found essential matrix * @return Essential matrix */ public static DMatrixRMaj fundamentalToEssential( DMatrixRMaj F, DMatrixRMaj K, @Nullable DMatrixRMaj outputE ) { return fundamentalToEssential(F, K, K, outputE); } /** * Given the calibration matrix, convert the fundamental matrix into an essential matrix. E = K[2]T*F*k[1]. The * singular values of the resulting E matrix are forced to be [1,1,0] * * @param F (Input) Fundamental matrix. 3x3 * @param K1 (Input) Calibration matrix view 1 (3x3) * @param K2 (Input) Calibration matrix view 2 (3x3) * @param outputE (Output) Found essential matrix * @return Essential matrix */ public static DMatrixRMaj fundamentalToEssential( DMatrixRMaj F, DMatrixRMaj K1, DMatrixRMaj K2, @Nullable DMatrixRMaj outputE ) { if (outputE == null) outputE = new DMatrixRMaj(3, 3); PerspectiveOps.multTranA(K2, F, K1, outputE); // this is unlikely to be a perfect essential matrix. reduce the error by enforcing essential constraints SingularValueDecomposition_F64 svd = DecompositionFactory_DDRM.svd(true, true, false); svd.decompose(outputE); DMatrixRMaj U = svd.getU(null, false); DMatrixRMaj W = svd.getW(null); DMatrixRMaj V = svd.getV(null, false); // settings value of singular values to be [1,1,0]. The first two singular values just need to be equal // for it to be an essential matrix SingularOps_DDRM.descendingOrder(U, false, W, V, false); W.set(0, 0, 1); W.set(1, 1, 1); W.set(2, 2, 0); PerspectiveOps.multTranC(U, W, V, outputE); return outputE; } /** * Given three fundamental matrices that describing the relationship between three views, compute a consistent * set of projective camera matrices. Consistent means that the camera matrices will give back the same * fundamental matrices, see [1]. This function is of dubious practical value, * see discussion in {@link FundamentalToProjective#threeView}. * * The first camera matrix, without loss of generality, is assumed to be P1 = [I|0]. * *
    *
  1. Page 301 in Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, "An Invitation to 3-D Vision" * Springer-Verlad, 2004
  2. *
* * @param F21 (Input) Fundamental matrix between view 1 and 2 * @param F31 (Input) Fundamental matrix between view 1 and 3 * @param F32 (Input) Fundamental matrix between view 2 and 3 * @param P2 (Output) Camera matrix for view 2 * @param P3 (Output) Camera matrix for view 3 * @see #fundamentalCompatible3 * @see FundamentalToProjective#threeView */ public static void fundamentalToProjective( DMatrixRMaj F21, DMatrixRMaj F31, DMatrixRMaj F32, DMatrixRMaj P2, DMatrixRMaj P3 ) { FundamentalToProjective alg = new FundamentalToProjective(); alg.threeView(F21, F31, F32, P2, P3); } /** * Finds the transform such that P*H = [I|0] where P is a 3x4 projective camera matrix and H is a 4x4 matrix * * @param P (Input) camera matrix 3x4 * @param H (Output) 4x4 matrix */ public static DMatrixRMaj projectiveToIdentityH( DMatrixRMaj P, @Nullable DMatrixRMaj H ) { if (H == null) H = new DMatrixRMaj(4, 4); ProjectiveToIdentity alg = new ProjectiveToIdentity(); if (!alg.process(P)) throw new RuntimeException("WTF this failed?? Probably NaN in P"); alg.computeH(H); return H; } /** * Computes a homography transform which will make the first camera in the list identity and modifies * the camera matrices using that homography * * @param cameraMatrices (input/output) Converts * @param H (output + Optional) storage for homography */ public static void projectiveMakeFirstIdentity( List cameraMatrices, @Nullable DMatrixRMaj H ) { BoofMiscOps.checkTrue(cameraMatrices.size() >= 1); H = projectiveToIdentityH(cameraMatrices.get(0), H); DMatrixRMaj tmp = new DMatrixRMaj(3, 4); for (int i = 0; i < cameraMatrices.size(); i++) { DMatrixRMaj P = cameraMatrices.get(i); CommonOps_DDRM.mult(P, H, tmp); P.setTo(tmp); } } /** *

* Checks to see if the three fundamental matrices are consistent based on their epipoles. *

*

* e23TF21e13 = 0
* e31TF32e21 = 0
* e32TF31e12 = 0
*

* *

* Section 15.4 in R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003 *

* * @param F21 (Input) Fundamental matrix between view 1 and 2 * @param F31 (Input) Fundamental matrix between view 1 and 3 * @param F32 (Input) Fundamental matrix between view 2 and 3 */ public static boolean fundamentalCompatible3( DMatrixRMaj F21, DMatrixRMaj F31, DMatrixRMaj F32, double tol ) { FundamentalExtractEpipoles extractEpi = new FundamentalExtractEpipoles(); Point3D_F64 e21 = new Point3D_F64(); Point3D_F64 e12 = new Point3D_F64(); Point3D_F64 e31 = new Point3D_F64(); Point3D_F64 e13 = new Point3D_F64(); Point3D_F64 e32 = new Point3D_F64(); Point3D_F64 e23 = new Point3D_F64(); extractEpi.process(F21, e21, e12); extractEpi.process(F31, e31, e13); extractEpi.process(F32, e32, e23); // GeometryMath_F64.innerProd(e12,F21,e21) // GeometryMath_F64.innerProd(e13,F31,e31) double score = 0; score += Math.abs(GeometryMath_F64.innerProd(e23, F21, e13)); score += Math.abs(GeometryMath_F64.innerProd(e31, F31, e21)); score += Math.abs(GeometryMath_F64.innerProd(e32, F32, e12)); score /= 3; return score <= tol; } /** *

* Decomposes a metric camera matrix P=K*[R|T], where A is an upper triangular camera calibration * matrix, R is a rotation matrix, and T is a translation vector. If {@link PerspectiveOps#createCameraMatrix} * is called using the returned value you will get an equivalent camera matrix. *

* *
    *
  • NOTE: There are multiple valid solutions to this problem and only one solution is returned. *
  • NOTE: The camera center will be on the plane at infinity. *
* * @param cameraMatrix Input: Camera matrix, 3 by 4 * @param K Output: Camera calibration matrix, 3 by 3. * @param worldToView Output: The rotation and translation. * @return true if decompose was successful */ public static boolean decomposeMetricCamera( DMatrixRMaj cameraMatrix, DMatrixRMaj K, Se3_F64 worldToView ) { return new DecomposeProjectiveToMetric().decomposeMetricCamera(cameraMatrix, K, worldToView); } /** * Decomposes an essential matrix into the rigid body motion which it was constructed from. Due to ambiguities * there are four possible solutions. See {@link DecomposeEssential} for the details. The correct solution can * be found using triangulation and the positive depth constraint, e.g. the objects must be in front of the camera * to be seen. Also note that the scale of the translation is lost, even with perfect data. * * @param E21 An essential matrix. * @return Four possible motions. From view 1 to view 2. * @see DecomposeEssential */ public static List decomposeEssential( DMatrixRMaj E21 ) { DecomposeEssential d = new DecomposeEssential(); d.decompose(E21); return d.getSolutions(); } /** * Decomposes a homography matrix that's in Euclidean space (computed from features in normalized image coordinates). * The homography is defined as H = (R + (1/d)*T*NT), where R is a 3x3 rotation matrix, * d is the distance of the plane, N is the plane's normal (unit vector), T is the translation vector. If * the homography is from view 'a' to 'b' then transform (R,T) will be from reference 'a' to 'b'. Note that the * returned 'T' is divided by 'd'. * * @param H Homography in Euclidean space * @return The set of four possible solutions. First param: motion (R,T). Second param: plane normal vector. * @see DecomposeHomography */ public static List> decomposeHomography( DMatrixRMaj H ) { DecomposeHomography d = new DecomposeHomography(); d.decompose(H); List solutionsN = d.getSolutionsN(); List solutionsSe = d.getSolutionsSE(); List> ret = new ArrayList<>(); for (int i = 0; i < 4; i++) { ret.add(new Tuple2<>(solutionsSe.get(i), solutionsN.get(i))); } return ret; } /** *

Computes symmetric Euclidean error for each observation and puts it into the storage. If the homography * projects the point into the plane at infinity (z=0) then it is skipped

* * error[i] = (H*x1 - x2')**2 + (inv(H)*x2 - x1')**2
* * @param observations (Input) observations * @param H (Input) Homography * @param H_inv (Input) Inverse of homography. if null it will be computed internally * @param storage (Output) storage for found errors */ public static void errorsHomographySymm( List observations, DMatrixRMaj H, @Nullable DMatrixRMaj H_inv, DogArray_F64 storage ) { storage.reset(); if (H_inv == null) H_inv = new DMatrixRMaj(3, 3); CommonOps_DDRM.invert(H, H_inv); Point3D_F64 tmp = new Point3D_F64(); for (int i = 0; i < observations.size(); i++) { AssociatedPair p = observations.get(i); double dx, dy; double error = 0; GeometryMath_F64.mult(H, p.p1, tmp); if (Math.abs(tmp.z) <= UtilEjml.EPS) continue; dx = p.p2.x - tmp.x/tmp.z; dy = p.p2.y - tmp.y/tmp.z; error += dx*dx + dy*dy; GeometryMath_F64.mult(H_inv, p.p2, tmp); if (Math.abs(tmp.z) <= UtilEjml.EPS) continue; dx = p.p1.x - tmp.x/tmp.z; dy = p.p1.y - tmp.y/tmp.z; error += dx*dx + dy*dy; storage.add(error); } } /** * Transfers a point from the first view to the third view using a plane induced by * a line in the second view. * * @param x1 (Input) point (pixel) in first view * @param l2 (Input) line in second view * @param T (Input) Trifocal tensor * @param x3 (Output) Induced point (pixel) in third view. Homogenous coordinates. * @return induced point. */ public static Point3D_F64 transfer_1_to_3( TrifocalTensor T, Point2D_F64 x1, Vector3D_F64 l2, @Nullable Point3D_F64 x3 ) { if (x3 == null) x3 = new Point3D_F64(); GeometryMath_F64.multTran(T.T1, l2, x3); // storage solution here to avoid the need to declare a temporary variable double xx = x3.x*x1.x; double yy = x3.y*x1.x; double zz = x3.z*x1.x; GeometryMath_F64.multTran(T.T2, l2, x3); xx += x3.x*x1.y; yy += x3.y*x1.y; zz += x3.z*x1.y; GeometryMath_F64.multTran(T.T3, l2, x3); x3.x = xx + x3.x; x3.y = yy + x3.y; x3.z = zz + x3.z; return x3; // Commented out code is closer to tensor notation. The above was derived from it // for (int i = 0; i < 3; i++) { // DMatrixRMaj t = T.T1; // // double vx; // switch( i ) { // case 0: vx = x.x; break; // case 1: vx = x.y; break; // case 2: vx = 1; break; // default: throw new RuntimeException("Egads"); // } // sumX += vx*(l.x*t.get(0,0)+l.y*t.get(1,0)+l.z*t.get(2,0)); // sumY += vx*(l.x*t.get(0,1)+l.y*t.get(1,1)+l.z*t.get(2,1)); // sumZ += vx*(l.x*t.get(0,2)+l.y*t.get(1,2)+l.z*t.get(2,2)); // } } /** * Transfers a point to the third view given observed locations in the first and second views * * @param x1 (Input) point (pixel) in first view * @param x2 (Input) point (pixel) in second view * @param T (Input) Trifocal tensor * @param x3 (Output) Induced point (pixel) in third view. Homogenous coordinates. * @return induced point. */ public static Point3D_F64 transfer_1_to_3( TrifocalTensor T, Point2D_F64 x1, Point2D_F64 x2, @Nullable Point3D_F64 x3 ) { if (x3 == null) x3 = new Point3D_F64(); var transfer = new TrifocalTransfer(); transfer.setTrifocal(T); transfer.transfer_1_to_3(x1.x, x1.y, x2.x, x2.y, x3); return x3; } /** * Transfers a point from the first view to the second view using a plane induced by * a line in the third view. * * @param x1 (Input) point (pixel) in first view * @param l3 (Input) line in third view * @param T (Input) Trifocal tensor * @param x2 (Output) Induced point (pixel) in second view. Homogenous coordinates. * @return induced point. */ public static Point3D_F64 transfer_1_to_2( TrifocalTensor T, Point2D_F64 x1, Vector3D_F64 l3, @Nullable Point3D_F64 x2 ) { if (x2 == null) x2 = new Point3D_F64(); GeometryMath_F64.mult(T.T1, l3, x2); // storage solution here to avoid the need to declare a temporary variable double xx = x2.x*x1.x; double yy = x2.y*x1.x; double zz = x2.z*x1.x; GeometryMath_F64.mult(T.T2, l3, x2); xx += x2.x*x1.y; yy += x2.y*x1.y; zz += x2.z*x1.y; GeometryMath_F64.mult(T.T3, l3, x2); x2.x = xx + x2.x; x2.y = yy + x2.y; x2.z = zz + x2.z; return x2; } /** * Transfers a point from the first view to the second view using the observed location in the third view * * @param x1 (Input) point (pixel) in first view * @param x3 (Input) point (pixel) in third view * @param T (Input) Trifocal tensor * @param x2 (Output) Induced point (pixel) in second view. Homogenous coordinates. * @return induced point. */ public static Point3D_F64 transfer_1_to_2( TrifocalTensor T, Point2D_F64 x1, Point2D_F64 x3, @Nullable Point3D_F64 x2 ) { if (x2 == null) x2 = new Point3D_F64(); var transfer = new TrifocalTransfer(); transfer.setTrifocal(T); transfer.transfer_1_to_2(x1.x, x1.y, x3.x, x3.y, x2); return x2; } /** * Elevates a projective camera matrix into a metric one using the rectifying homography. * Extracts calibration and Se3 pose. * *
	 * P'=P*H
	 * K,R,t = decompose(P')
	 * 
* where P is the camera matrix, H is the homography, (K,R,t) are the intrinsic calibration matrix, rotation, * and translation * * @param cameraMatrix (Input) camera matrix. 3x4 * @param H (Input) Rectifying homography. 4x4 * @param worldToView (Output) Transform from world to camera view * @param K (Output) Camera calibration matrix * @see MultiViewOps#absoluteQuadraticToH * @see #decomposeMetricCamera(DMatrixRMaj, DMatrixRMaj, Se3_F64) */ public static boolean projectiveToMetric( DMatrixRMaj cameraMatrix, DMatrixRMaj H, Se3_F64 worldToView, DMatrixRMaj K ) { return new DecomposeProjectiveToMetric().projectiveToMetric(cameraMatrix, H, worldToView, K); } /** *

* Convert the projective camera matrix into a metric transform given the rectifying homography and a * known calibration matrix. This simplifies the math compared to {@link #projectiveToMetric} where it needs * to extract `K`. *

* {@code P = K*[R|T]*H} where H is the inverse of the rectifying homography. * * @param cameraMatrix (Input) camera matrix. 3x4 * @param H (Input) Rectifying homography. 4x4 * @param K (Input) Known calibration matrix * @param worldToView (Output) transform from world to camera view */ public static boolean projectiveToMetricKnownK( DMatrixRMaj cameraMatrix, DMatrixRMaj H, DMatrixRMaj K, Se3_F64 worldToView ) { return new DecomposeProjectiveToMetric().projectiveToMetricKnownK(cameraMatrix, H, K, worldToView); } /** * If the solution to the absolute quadratic was computed using a linear methods it will not exactly have * the required structure. This forces the structure to match. *
    *
  1. Positive diagonal elements
  2. *
  3. (Optional) zero principle point
  4. *
  5. (Optional) zero skew
  6. *
  7. Q = H*diag([1 1 1 0])*HT and H = [K 0; -p'*K 1]
  8. * *
* *
    *
  1. R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003
  2. *
* * @param Q Approximate solution to absolute quadratic * @see DecomposeAbsoluteDualQuadratic */ public static boolean enforceAbsoluteQuadraticConstraints( DMatrix4x4 Q, boolean zeroCenter, boolean zeroSkew ) { return enforceAbsoluteQuadraticConstraints(Q, zeroCenter, zeroSkew, null); } public static boolean enforceAbsoluteQuadraticConstraints( DMatrix4x4 Q, boolean zeroCenter, boolean zeroSkew, @Nullable DecomposeAbsoluteDualQuadratic alg ) { if (alg == null) alg = new DecomposeAbsoluteDualQuadratic(); // see if it's potentially just off by a sign if (Q.a33 < 0) CommonOps_DDF4.scale(-1, Q); if (!alg.decompose(Q)) return false; // force positive definite DMatrix3x3 k = alg.getK(); if (zeroCenter) { k.a13 = k.a23 = 0; } if (zeroSkew) { k.a12 = 0; } alg.recomputeQ(Q); return true; } /** * Decomposes the absolute quadratic to extract the rectifying homogrpahy H. This is used to go from * a projective to metric (calibrated) geometry. See pg 464 in [1]. * *

Q = H*I*HT

*

where I = diag(1 1 1 0)

* *
    *
  1. R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003
  2. *
* * @param Q (Input) Absolute quadratic. Typically found in auto calibration. Not modified. * @param H (Output) 4x4 rectifying homography. * @see DecomposeAbsoluteDualQuadratic */ public static boolean absoluteQuadraticToH( DMatrix4x4 Q, DMatrixRMaj H ) { DecomposeAbsoluteDualQuadratic alg = new DecomposeAbsoluteDualQuadratic(); if (!alg.decompose(Q)) return false; return alg.computeRectifyingHomography(H); } /** * Rectifying / calibrating homography to dual absolute quadratic. * *

Q = H*I*HT = H(:,1:3)*H(:,1:3)'

*

where I = diag(1 1 1 0)

* * @param H (Input) 4x4 rectifying homography. * @param Q (Output) Absolute quadratic. Typically found in auto calibration. Not modified. */ public static void rectifyHToAbsoluteQuadratic( DMatrixRMaj H, DMatrixRMaj Q ) { int indexQ = 0; for (int rowA = 0; rowA < 4; rowA++) { for (int colB = 0; colB < 4; colB++) { int indexA = rowA*4; int indexB = colB*4; double sum = 0; for (int i = 0; i < 3; i++) { // sum += H.get(rowA,i)*H.get(colB,i); sum += H.data[indexA++]*H.data[indexB++]; } // Q.set(rowA,colB,sum); Q.data[indexQ++] = sum; } } } /** * Constructs a canonical rectifying homography from its components, 3x3 intrinsic matrix K and p the plane * at infinity. See 19.2 page 460 in [1]. This assumes that camera matrix P1 = [I|0]. * *

H=[K*K, 0; -p'*k, 1]

* *
    *
  1. R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003
  2. *
* * @param K (Input) 3x3 intrinsic calibration matrix * @param planeAtInfinity (Input) Plane at infinity * @param H (Output) rectifying homography. */ public static void canonicalRectifyingHomographyFromKPinf( DMatrixRMaj K, Point3D_F64 planeAtInfinity, DMatrixRMaj H ) { H.reshape(4, 4); CommonOps_DDRM.insert(K, H, 0, 0); // v = -p'*K double v1 = -(planeAtInfinity.x*K.data[0] + planeAtInfinity.y*K.data[3] + planeAtInfinity.z*K.data[6]); double v2 = -(planeAtInfinity.x*K.data[1] + planeAtInfinity.y*K.data[4] + planeAtInfinity.z*K.data[7]); double v3 = -(planeAtInfinity.x*K.data[2] + planeAtInfinity.y*K.data[5] + planeAtInfinity.z*K.data[8]); H.unsafe_set(3, 0, v1); H.unsafe_set(3, 1, v2); H.unsafe_set(3, 2, v3); H.unsafe_set(3, 3, 1.0); H.unsafe_set(0, 3, 0); H.unsafe_set(1, 3, 0); H.unsafe_set(2, 3, 0); } /** * Extracts the intrinsic camera matrix from a view given its camera matrix and the dual absolute quadratic. * *

wi = Pi*Q*PiT, where wi = Ki*K'i

* * @param Q (Input) Dual absolute qudratic * @param P (Input) Camera matrix for a view * @param intrinsic (Output) found intrinsic parameters */ public static void intrinsicFromAbsoluteQuadratic( DMatrixRMaj Q, DMatrixRMaj P, CameraPinhole intrinsic ) { DMatrixRMaj tmp = new DMatrixRMaj(3, 4); DMatrixRMaj tmp2 = new DMatrixRMaj(3, 3); CommonOps_DDRM.mult(P, Q, tmp); CommonOps_DDRM.multTransB(tmp, P, tmp2); decomposeDiac(tmp2, intrinsic); } /** * Extracts the camera calibration matrix on the dual image of the absolute conic (DIAC). Elements * which could cause problems if negative have the absolute value taken to avoid NaN. * * The upper triangular elements in w (DIAC) are passed in. * * @param intrinsic (output) K extracted from w */ public static void decomposeDiac( double w11, double w12, double w13, double w22, double w23, double w33, CameraPinhole intrinsic ) { // divide by w33 to ensure that it is equal to one double cx = w13/w33; double cy = w23/w33; double fy = Math.sqrt(Math.abs(w22/w33 - cy*cy)); double skew = (w12/w33 - cx*cy)/fy; double fx = Math.sqrt(Math.abs(w11/w33 - skew*skew - cx*cx)); intrinsic.cx = cx; intrinsic.cy = cy; intrinsic.fx = fx; intrinsic.fy = fy; intrinsic.skew = skew; } /** * Extracts the camera calibration matrix on the dual image of the absolute conic (DIAC). Elements * which could cause problems if negative have the absolute value taken to avoid NaN. * * @param w (input) DIAC 3x3 * @param intrinsic (output) K extracted from w */ public static void decomposeDiac( DMatrixRMaj w, CameraPinhole intrinsic ) { decomposeDiac(w.data[0], w.data[1], w.data[2], w.data[4], w.data[5], w.data[8], intrinsic); } /** * Given the calibration matrix for the first view, plane at infinity, and lambda (scaling factor) compute * the rectifying homography for changing a projective camera matrix into a metric one. * *

H = [K 0;v' &lambda]

* * @param K 3x3 calibration matrix for view 1 * @param v1 plane at infinity * @param v2 plane at infinity * @param v3 plane at infinity * @param lambda scaling factor * @param H (Optional) Storage for 4x4 matrix * @return The homography */ public static DMatrixRMaj createProjectiveToMetric( DMatrixRMaj K, double v1, double v2, double v3, double lambda, @Nullable DMatrixRMaj H ) { if (H == null) H = new DMatrixRMaj(4, 4); else H.reshape(4, 4); CommonOps_DDRM.insert(K, H, 0, 0); H.set(0, 3, 0); H.set(1, 3, 0); H.set(2, 3, 0); H.set(3, 0, v1); H.set(3, 1, v2); H.set(3, 2, v3); H.set(3, 3, lambda); return H; } /** * Decomposes the absolute dual quadratic into the following submatrices: Q=[w -w*p;-p'*w p'*w*p] * * @param Q (Input) Absolute quadratic. Typically found in auto calibration. Not modified. * @param w (Output) 3x3 symmetric matrix * @param p (Output) 3x1 vector * @return true if successful or false if it failed * @see DecomposeAbsoluteDualQuadratic */ public static boolean decomposeAbsDualQuadratic( DMatrix4x4 Q, DMatrix3x3 w, DMatrix3 p ) { DecomposeAbsoluteDualQuadratic alg = new DecomposeAbsoluteDualQuadratic(); if (!alg.decompose(Q)) return false; w.setTo(alg.getW()); p.setTo(alg.getP()); return true; } /** * Splits the associated pairs into two lists * * @param input List of associated features * @return two lists containing each set of features */ public static Tuple2, List> split2( List input ) { List list1 = new ArrayList<>(); List list2 = new ArrayList<>(); for (int i = 0; i < input.size(); i++) { list1.add(input.get(i).p1); list2.add(input.get(i).p2); } return new Tuple2<>(list1, list2); } /** * Splits the associated triple into three lists * * @param input List of associated features * @return three lists containing each set of features */ public static Tuple3, List, List> split3( List input ) { List list1 = new ArrayList<>(); List list2 = new ArrayList<>(); List list3 = new ArrayList<>(); for (int i = 0; i < input.size(); i++) { list1.add(input.get(i).p1); list2.add(input.get(i).p2); list3.add(input.get(i).p3); } return new Tuple3<>(list1, list2, list3); } /** * Convenience function for initializing bundle adjustment parameters. Triangulates points using camera * position and pixel observations. * * @param structure camera locations * @param observations observations of features in the images */ public static void triangulatePoints( SceneStructureMetric structure, SceneObservations observations ) { TriangulateNViewsMetricH triangulator = FactoryMultiView.triangulateNViewMetricH(ConfigTriangulation.GEOMETRIC()); List list_p_to_n = new ArrayList<>(); for (int i = 0; i < structure.cameras.size; i++) { RemoveBrownPtoN_F64 p2n = new RemoveBrownPtoN_F64(); BundleAdjustmentCamera baseModel = Objects.requireNonNull(structure.cameras.data[i].model); if (baseModel instanceof BundlePinholeSimplified) { BundlePinholeSimplified cam = (BundlePinholeSimplified)baseModel; p2n.setK(cam.f, cam.f, 0, 0, 0).setDistortion(new double[]{cam.k1, cam.k2}, 0, 0); } else if (baseModel instanceof BundlePinhole) { BundlePinhole cam = (BundlePinhole)baseModel; p2n.setK(cam.fx, cam.fy, cam.skew, cam.cx, cam.cy).setDistortion(new double[]{0, 0}, 0, 0); } else if (baseModel instanceof BundlePinholeBrown) { BundlePinholeBrown cam = (BundlePinholeBrown)baseModel; p2n.setK(cam.fx, cam.fy, cam.skew, cam.cx, cam.cy).setDistortion(cam.radial, cam.t1, cam.t2); } else { throw new RuntimeException("Unknown camera model! " + baseModel.getClass().getSimpleName()); } list_p_to_n.add(p2n); } var normObs = new DogArray<>(Point2D_F64::new); normObs.resize(3); final boolean homogenous = structure.isHomogenous(); var X = new Point4D_F64(); var worldToViews = new ArrayList(); for (int i = 0; i < structure.points.size; i++) { normObs.reset(); worldToViews.clear(); SceneStructureCommon.Point sp = structure.points.get(i); for (int j = 0; j < sp.views.size; j++) { int viewIdx = sp.views.get(j); SceneStructureMetric.View v = structure.views.data[viewIdx]; worldToViews.add(structure.getParentToView(v)); // get the observation in pixels Point2D_F64 n = normObs.grow(); int pointidx = observations.views.get(viewIdx).point.indexOf(i); observations.views.get(viewIdx).getPixel(pointidx, n); // convert to normalized image coordinates list_p_to_n.get(v.camera).compute(n.x, n.y, n); } if (!triangulator.triangulate(normObs.toList(), worldToViews, X)) { // this should work unless the input is bad throw new RuntimeException("Triangulation failed. Bad input?"); } if (homogenous) sp.set(X.x, X.y, X.z, X.w); else sp.set(X.x/X.w, X.y/X.w, X.z/X.w); } } /** * Finds this scale which minimizes the difference between `a` and `b`. ||scale*a-b|| * * @param a (Input) matrix * @param b (Input) matrix * @return scale factor */ public static double findScale( DMatrixRMaj a, DMatrixRMaj b ) { BoofMiscOps.checkTrue(a.numRows == b.numRows); BoofMiscOps.checkTrue(a.numCols == b.numCols); final int N = a.getNumElements(); double sum = 0.0; double weights = 0.0; for (int i = 0; i < N; i++) { double valA = a.data[i]; double valB = b.data[i]; if (valA == 0.0) continue; double weight = Math.abs(valB); sum += weight*(valB/valA); weights += weight; } return sum/weights; } /** * Finds the scale which minimizes the difference between `a` and `b`. ||scale*a-b|| * * @param a (Input) 3D coordinate * @param b (Input) 3D coordinate * @return scale factor */ public static double findScale( GeoTuple3D_F64 a, GeoTuple3D_F64 b ) { int which = UtilPoint3D_F64.axisLargestAbs(a); double bottom = a.getIdx(which); if (bottom == 0.0) return 0.0; return b.getIdx(which)/bottom; } /** * Lists a list of {@link AssociatedTriple} into a list of observations for each camera independently. * * @param src (Input) list of {@link AssociatedTriple} * @param dst (Output) list of lists. Can be null. * @return list of lists. */ public static List> splits3Lists( List src, @Nullable List> dst ) { // Ensure dst is a list that contains 3 empty lists if (dst == null) { dst = new ArrayList<>(); } if (dst.size() != 3) { dst.clear(); for (int i = 0; i < 3; i++) { dst.add(new ArrayList<>()); } } else { for (int i = 0; i < 3; i++) { dst.get(i).clear(); } } for (int i = 0; i < src.size(); i++) { AssociatedTriple a = src.get(i); dst.get(0).add(a.p1); dst.get(1).add(a.p2); dst.get(2).add(a.p3); } return dst; } /** * Converts a list of associated {@link AssociatedTriple} in a {@link DogArray} of {@link AssociatedTuple} * * @param src (Input) List of AssociatedTriple * @param dst (Output) Array of AssociatedTuple. Array is reset. */ public static void convertTr( List src, DogArray dst ) { dst.resize(src.size()); if (src.size() == 0) return; BoofMiscOps.checkTrue(dst.get(0).size() == 3); for (int i = 0; i < src.size(); i++) { AssociatedTriple a = src.get(i); AssociatedTuple b = dst.get(i); b.set(0, a.p1); b.set(1, a.p2); b.set(2, a.p3); } } /** * Converts a list of associated {@link AssociatedTriple} in a {@link DogArray} of {@link AssociatedPair} * * @param src (Input) List of AssociatedTriple * @param idx0 (Input) which feature in the triple is p1 in the pair * @param idx1 (Input) which feature in the triple is p2 in the pair * @param dst (Output) Array of AssociatedPair. Array is reset. */ public static void convertTr( List src, int idx0, int idx1, DogArray dst ) { dst.resize(src.size()); if (src.size() == 0) return; for (int i = 0; i < src.size(); i++) { AssociatedTriple a = src.get(i); dst.get(i).setTo(a.get(idx0), a.get(idx1)); } } /** * Converts a list of associated {@link AssociatedTuple} in a {@link DogArray} of {@link AssociatedPair} * * @param src (Input) List of AssociatedTuple * @param idx0 (Input) which feature in the tuple is p1 in the pair * @param idx1 (Input) which feature in the tuple is p2 in the pair * @param dst (Output) Array of AssociatedPair. Array is reset. */ public static void convertTu( List src, int idx0, int idx1, DogArray dst ) { dst.resize(src.size()); if (src.size() == 0) return; BoofMiscOps.checkTrue(src.get(0).size() == 3); for (int i = 0; i < src.size(); i++) { AssociatedTuple a = src.get(i); dst.get(i).setTo(a.get(idx0), a.get(idx1)); } } /** * Applies stereo disparity equation to compute the distance of an object. Simple equation but if you use * this equation you know you didn't screw it up. */ public static double disparityToRange( double disparity, double focalLength, double baseline ) { if (disparity == 0.0) return Double.POSITIVE_INFINITY; if (disparity < 0.0) throw new IllegalArgumentException("Disparity can't be less than zero"); return focalLength*baseline/disparity; } /** * Projects points in the scene onto the specified image. Results are returned using a lambda that provides * the points index, the point's 3D location in the camera frame, and the projected pixels. * * No checks are done for the following: *
    *
  • Was the feature observed by this view
  • *
  • Does the feature appear behind the camera
  • *
  • Is the projected pixel inside the image
  • *
* * @param scene (Input) Metric scene * @param viewIdx (Input) Index of view for which points are projected * @param function (Output) Called with results (index, 3D camera location, pixel) */ public static void scenePointsToPixels( SceneStructureMetric scene, int viewIdx, BoofLambdas.ProcessIndex2 function ) { Se3_F64 world_to_view = new Se3_F64(); SceneStructureMetric.View view = scene.views.get(viewIdx); scene.getWorldToView(view, world_to_view, null); BundleAdjustmentCamera camera = Objects.requireNonNull(scene.getViewCamera(view).model); Point3D_F64 camPoint = new Point3D_F64(); Point2D_F64 pixel = new Point2D_F64(); for (int pointIdx = 0; pointIdx < scene.points.size; pointIdx++) { SceneStructureCommon.Point point = scene.points.get(pointIdx); double x = point.coordinate[0]; double y = point.coordinate[1]; double z = point.coordinate[2]; double w = scene.isHomogenous() ? point.coordinate[3] : 1.0; // Project the pixel while being careful for points at infinity SePointOps_F64.transformV(world_to_view, x, y, z, w, camPoint); camera.project(camPoint.x, camPoint.y, camPoint.z, pixel); function.process(pointIdx, camPoint, pixel); } } /** * Converts the points in the scene into a 3D point cloud. A lambda is used pass in the results. This function * will work if it's homogenous or 3D coordinates. * * @param scene (Input) The scene * @param tol (Input) Only used if the scene is in homogenous coordinates. * Tolerance for points being at infinity. Smaller values means more tolerant. Try 1e-8. * @param func (Output) Results are passed in to this function with their index and 3D point. */ public static void sceneToCloud3( SceneStructureMetric scene, double tol, BoofLambdas.ProcessIndex func ) { Point3D_F64 out = new Point3D_F64(); final boolean homogenous = scene.isHomogenous(); for (int pointIdx = 0; pointIdx < scene.points.size; pointIdx++) { SceneStructureCommon.Point point = scene.points.get(pointIdx); double x = point.coordinate[0]; double y = point.coordinate[1]; double z = point.coordinate[2]; if (homogenous) { double r = Math.sqrt(x*x + y*y + z*z); double w = point.coordinate[3]; // Make sure the point isn't at infinity if (r*tol > Math.abs(w)) { continue; } x /= w; y /= w; z /= w; } out.setTo(x, y, z); func.process(pointIdx, out); } } /** * Converts the points in the scene into a homogenous point cloud. Results are passed in to the lambda. * It will work with a scene in homogenous or 3D coordinates. * * @param scene (Input) The scene * @param func (Output) Results are passed in to this function with their index and 3D point. */ public static void sceneToCloudH( SceneStructureMetric scene, BoofLambdas.ProcessIndex func ) { Point4D_F64 out = new Point4D_F64(); final boolean homogenous = scene.isHomogenous(); for (int pointIdx = 0; pointIdx < scene.points.size; pointIdx++) { SceneStructureCommon.Point point = scene.points.get(pointIdx); double x = point.coordinate[0]; double y = point.coordinate[1]; double z = point.coordinate[2]; double w = homogenous ? point.coordinate[3] : 1.0; out.setTo(x, y, z, w); func.process(pointIdx, out); } } /** * IF a homography is compatible with a fundamental matrix then norm(H'*F + F'*H) = 0. A homography * is compatible with F, if H is generated from a plane. * *

* Page 327 in R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003 *

* * @param F (Input) Fundamental matrix * @param H (Input) Homography * @return A number close to zero if compatible */ public static double compatibleHomography( DMatrixRMaj F, DMatrixRMaj H ) { DMatrixRMaj tmp0 = new DMatrixRMaj(3, 3); DMatrixRMaj tmp1 = new DMatrixRMaj(3, 3); CommonOps_DDRM.multTransA(H, F, tmp0); CommonOps_DDRM.multTransA(F, H, tmp1); CommonOps_DDRM.add(tmp0, tmp1, tmp1); return NormOps_DDRM.normF(tmp1); } /** * Given a homography, compute the Fundamental matrix between the two views. This requires at least 2 points * which are not on the plane to work. Using this function it is possible to compute a fundamental matrix from 6 * points. * *

* Page 335 in R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003 *

* * @param H21 (Input) known homography * @param pairs (Input) two or more point observations which do not lie on the plane * @param F21 (Output) found homography matrix * @return true if no errors were encountered */ public static boolean homographyToFundamental( DMatrixRMaj H21, List pairs, DMatrixRMaj F21 ) { List epipolarLines = new ArrayList<>(); Point2D_F64 h2 = new Point2D_F64(); for (int i = 0; i < pairs.size(); i++) { AssociatedPair p = pairs.get(i); GeometryMath_F64.mult(H21, p.p1, h2); epipolarLines.add(UtilLine2D_F64.convert(p.p2, h2, (LineGeneral2D_F64)null)); } // Epipole in the second view, homogenous coordinates Point3D_F64 epipole = Intersection2D_F64.intersection(epipolarLines, null); // F=cross_matrix(e)*H GeometryMath_F64.multCrossA(epipole, H21, F21); // In the future an alternative implementation might require error checking, so this is staying return true; } /** * Creates a pixel homography from a rotation matrix and the intrinsic calibration matrices. H = K2*R21*inv(K1) * * @param R21 (Input) Rotation matrix * @param K1 (Input) Intrinsic camera matrix 1 * @param K2 (Input) Intrinsic camera matrix 2 * @return The homography */ public static DMatrixRMaj homographyFromRotation( DMatrixRMaj R21, DMatrixRMaj K1, DMatrixRMaj K2, @Nullable DMatrixRMaj H21 ) { if (H21 == null) H21 = new DMatrixRMaj(3, 3); DMatrixRMaj K1_inv = new DMatrixRMaj(3, 3); DMatrixRMaj KR = new DMatrixRMaj(3, 3); PerspectiveOps.invertCalibrationMatrix(K1, K1_inv); CommonOps_DDRM.mult(K2, R21, KR); CommonOps_DDRM.mult(KR, K1_inv, H21); return H21; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy