All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.NormalizationPoint2D Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo;

import georegression.geometry.UtilCurves_F64;
import georegression.struct.curve.ConicGeneral_F64;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point3D_F64;
import org.ejml.data.DMatrix3x3;
import org.ejml.data.DMatrixRMaj;
import org.jetbrains.annotations.Nullable;

/**
 * Describes how to normalize a set of points such that they have zero mean and variance. This is equivalent
 * to applying the matrix below. Normalization is often needed as a preprocessing step for solving linear equations.
 * Greatly reduces bias and numerical errors.
 *
 * 
 * N = [ 1/σ_x     0      -μ_x/σ_x ]
 *     [    0   1/σ_y 0   -μ_y/σ_y ]
 *     [    0      0          1    ]
 * 
* *

* Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, "An Invitation to 3-D Vision" Springer-Verlad, 2004 *

* * @author Peter Abeles */ public class NormalizationPoint2D { // default value is do nothing public double meanX = 0, stdX = 1; public double meanY = 0, stdY = 1; // internal workspace private DMatrix3x3 work = new DMatrix3x3(); public NormalizationPoint2D() {} public NormalizationPoint2D( double meanX, double stdX, double meanY, double stdY ) { this.meanX = meanX; this.stdX = stdX; this.meanY = meanY; this.stdY = stdY; } public void set( double meanX, double stdX, double meanY, double stdY ) { this.meanX = meanX; this.stdX = stdX; this.meanY = meanY; this.stdY = stdY; } /** * Applies normalization to a H=3xN matrix * * out = Norm*H * * @param H 3xN matrix. Can be same as input matrix */ public void apply( DMatrixRMaj H, DMatrixRMaj output ) { output.reshape(3, H.numCols); int stride = H.numCols; for (int col = 0; col < H.numCols; col++) { // This column in H double h1 = H.data[col], h2 = H.data[col + stride], h3 = H.data[col + 2*stride]; output.data[col] = h1/stdX - meanX*h3/stdX; output.data[col + stride] = h2/stdY - meanY*h3/stdY; output.data[col + 2*stride] = h3; } } /** * Applies normalization to a H=3xN matrix * * out = Norm*H * * @param H 3xN matrix. Can be same as input matrix */ public void remove( DMatrixRMaj H, DMatrixRMaj output ) { output.reshape(3, H.numCols); int stride = H.numCols; for (int col = 0; col < H.numCols; col++) { // This column in H double h1 = H.data[col], h2 = H.data[col + stride], h3 = H.data[col + 2*stride]; output.data[col] = h1*stdX + h3*meanX; output.data[col + stride] = h2*stdY + h3*meanY; output.data[col + 2*stride] = h3; } } public void apply( Point2D_F64 p, Point2D_F64 output ) { output.x = (p.x - meanX)/stdX; output.y = (p.y - meanY)/stdY; } public void apply( Point3D_F64 p, Point3D_F64 output ) { output.x = (p.x - p.z*meanX)/stdX; output.y = (p.y - p.z*meanY)/stdY; } /** * C* = H'*C*H */ public void apply( ConicGeneral_F64 p, ConicGeneral_F64 output ) { DMatrixRMaj C = UtilCurves_F64.convert(p, (DMatrixRMaj)null); DMatrixRMaj Hinv = matrixInv(null); DMatrixRMaj CP = new DMatrixRMaj(3, 3); PerspectiveOps.multTranA(Hinv, C, Hinv, CP); UtilCurves_F64.convert(CP, output); } /** * Apply transform to conic in 3x3 matrix format. */ public void apply( DMatrix3x3 C, DMatrix3x3 output ) { DMatrix3x3 Hinv = matrixInv3(work); PerspectiveOps.multTranA(Hinv, C, Hinv, output); } public void remove( Point2D_F64 p, Point2D_F64 output ) { output.x = p.x*stdX + meanX; output.y = p.y*stdY + meanY; } public void remove( Point3D_F64 p, Point3D_F64 output ) { output.x = p.x*stdX + p.z*meanX; output.y = p.y*stdY + p.z*meanY; } public void remove( ConicGeneral_F64 p, ConicGeneral_F64 output ) { DMatrixRMaj C = UtilCurves_F64.convert(p, (DMatrixRMaj)null); DMatrixRMaj H = matrix(null); DMatrixRMaj CP = new DMatrixRMaj(3, 3); PerspectiveOps.multTranA(H, C, H, CP); UtilCurves_F64.convert(CP, output); } public void remove( DMatrix3x3 C, DMatrix3x3 output ) { DMatrix3x3 H = matrix3(work); PerspectiveOps.multTranA(H, C, H, output); } public DMatrixRMaj matrix( @Nullable DMatrixRMaj M ) { if (M == null) M = new DMatrixRMaj(3, 3); else M.reshape(3, 3); M.set(0, 0, 1.0/stdX); M.set(1, 1, 1.0/stdY); M.set(0, 2, -meanX/stdX); M.set(1, 2, -meanY/stdY); M.set(2, 2, 1); return M; } public DMatrixRMaj matrixInv( @Nullable DMatrixRMaj M ) { if (M == null) M = new DMatrixRMaj(3, 3); else M.reshape(3, 3); M.set(0, 0, stdX); M.set(1, 1, stdY); M.set(0, 2, meanX); M.set(1, 2, meanY); M.set(2, 2, 1); return M; } public DMatrix3x3 matrix3( @Nullable DMatrix3x3 M ) { if (M == null) M = new DMatrix3x3(); else { M.a21 = 0; M.a31 = 0; M.a31 = 0; } M.a11 = 1.0/stdX; M.a12 = 1.0/stdY; M.a13 = -meanX/stdX; M.a23 = -meanY/stdY; M.a22 = 1; return M; } public DMatrix3x3 matrixInv3( DMatrix3x3 M ) { if (M == null) M = new DMatrix3x3(); else { M.a21 = 0; M.a31 = 0; M.a31 = 0; } M.a11 = stdX; M.a12 = stdY; M.a13 = meanX; M.a23 = meanY; M.a22 = 1; return M; } public boolean isEquals( NormalizationPoint2D a, double tol ) { if (Math.abs(a.meanX - meanX) > tol) return false; if (Math.abs(a.meanY - meanY) > tol) return false; if (Math.abs(a.stdX - stdX) > tol) return false; if (Math.abs(a.stdY - stdY) > tol) return false; return true; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy