All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.calibration.CalibrationPlanarGridZhang99 Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2023, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.calibration;

import boofcv.abst.geo.bundle.BundleAdjustment;
import boofcv.abst.geo.bundle.SceneObservations;
import boofcv.abst.geo.bundle.SceneStructureMetric;
import boofcv.abst.geo.calibration.ImageResults;
import boofcv.alg.geo.bundle.BundleAdjustmentMetricResidualFunction;
import boofcv.alg.geo.bundle.CodecSceneStructureMetric;
import boofcv.alg.geo.calibration.cameras.Zhang99Camera;
import boofcv.factory.geo.ConfigBundleAdjustment;
import boofcv.factory.geo.FactoryMultiView;
import boofcv.misc.BoofMiscOps;
import boofcv.misc.ConfigConverge;
import boofcv.struct.calib.CameraModel;
import boofcv.struct.calib.CameraPinholeBrown;
import boofcv.struct.geo.PointIndex2D_F64;
import georegression.struct.point.Point2D_F64;
import georegression.struct.se.Se3_F64;
import lombok.Getter;
import lombok.Setter;
import org.ddogleg.optimization.ConfigNonLinearLeastSquares;
import org.ddogleg.struct.VerbosePrint;
import org.ejml.data.DMatrixRMaj;
import org.jetbrains.annotations.Nullable;

import java.io.PrintStream;
import java.util.ArrayList;
import java.util.List;
import java.util.Objects;
import java.util.Set;

/**
 * 

* Full implementation of the Zhang99 camera calibration algorithm using planar calibration targets. The original * algorithm has been extended to support multiple camera models. The general process is described below: *

*
    *
  1. Linear estimate of pinhole camera parameters
  2. *
  3. Estimate of camera pose
  4. *
  5. {@link Zhang99Camera Camera model} specific initialization given the pinhole estimate
  6. *
  7. Non-linear refinement of intrinsic and extrinsic parameters
  8. *
* *

* The algorithm has been extended to multiple camera models by providing each camera model an initial estimate * of the pinhole camera parameters with camera pose. If the camera model has radial distortion, as modeled by * {@link CameraPinholeBrown}, then an initial estimate of radial distortion is * {@link RadialDistortionEstimateLinear estimated} inside the camera model specific code. See specific cameras * for how they are all initialized. *

* *

* When processing the results be sure to take in account the coordinate system being left or right handed. Calibration * works just fine with either coordinate system, but most 3D geometric algorithms assume a right handed coordinate * system while most images are left handed. *

* *

* A listener can be provide that will give status updates and allows requests for early termination. If a request * for early termination is made then a RuntimeException will be thrown. *

* *

* [1] Zhengyou Zhang, "Flexible Camera Calibration By Viewing a Plane From Unknown Orientations,", * International Conference on Computer Vision (ICCV'99), Corfu, Greece, pages 666-673, September 1999. *

* * @author Peter Abeles */ @SuppressWarnings({"NullAway.Init"}) public class CalibrationPlanarGridZhang99 implements VerbosePrint { Zhang99Camera cameraGenerator; /** Should it assume zero skew when estimating a pinhole camera? */ @Getter @Setter public boolean zeroSkew = true; /** Convergence parameters for SBA */ @Getter public final ConfigConverge configConvergeSBA = new ConfigConverge(1e-20, 1e-20, 200); /** Config for bundle adjustment */ @Getter public final ConfigBundleAdjustment configSBA = new ConfigBundleAdjustment(); // estimation algorithms private final Zhang99ComputeTargetHomography computeHomography; private final Zhang99CalibrationMatrixFromHomographies computeK; private final Zhang99DecomposeHomography decomposeH = new Zhang99DecomposeHomography(); /** contains found parameters */ @Getter public SceneStructureMetric structure; /** observations for bundle adjustment */ @Getter public SceneObservations observations; /** provides information on calibration status as it's being computed */ @Getter @Setter private Listener listener; /** where calibration points are layout on the target. */ private @Setter List> layouts; private @Nullable PrintStream verbose = null; { // See comments in MetricBundleAdjustmentUtils for why these values are set this way configSBA.optimizer.type = ConfigNonLinearLeastSquares.Type.LEVENBERG_MARQUARDT; configSBA.optimizer.lm.hessianScaling = false; configSBA.optimizer.robustSolver = false; } /** * Configures calibration process. */ public CalibrationPlanarGridZhang99( Zhang99Camera cameraGenerator ) { this.cameraGenerator = cameraGenerator; computeHomography = new Zhang99ComputeTargetHomography(); computeK = new Zhang99CalibrationMatrixFromHomographies(); } /** * Processes observed calibration point coordinates and computes camera intrinsic and extrinsic * parameters. * * @param observations Set of observed grid locations in pixel coordinates. * @return true if successful and false if it failed */ public boolean process( List observations ) { Objects.requireNonNull(layouts, "Must specify the layout first"); computeK.setAssumeZeroSkew(zeroSkew); // compute initial parameter estimates using linear algebra if (!linearEstimate(observations)) return false; status("Non-linear refinement"); // perform non-linear optimization to improve results if (!performBundleAdjustment()) return false; return true; } /** * Find an initial estimate for calibration parameters using linear techniques. */ protected boolean linearEstimate( List observations ) { status("Estimating Homographies"); var homographies = new ArrayList(); var motions = new ArrayList(); for (int i = 0; i < observations.size(); i++) { CalibrationObservation observation = observations.get(i); computeHomography.setTargetLayout(layouts.get(observation.target)); if (!computeHomography.computeHomography(observation.points)) return false; DMatrixRMaj H = computeHomography.getCopyOfHomography(); homographies.add(H); } status("Estimating Calibration Matrix"); computeK.process(homographies); DMatrixRMaj K = computeK.getCalibrationMatrix(); decomposeH.setCalibrationMatrix(K); for (int i = 0; i < homographies.size(); i++) { DMatrixRMaj H = homographies.get(i); motions.add(decomposeH.decompose(H)); } status("Initial Model Parameters"); convertIntoBundleStructure(motions, K, homographies, observations); return true; } private void status( String message ) { if (listener != null && !listener.zhangUpdate(message)) { throw new RuntimeException("User requested termination of calibration"); } } /** * Use non-linear optimization to improve the parameter estimates */ public boolean performBundleAdjustment() { BundleAdjustment bundleAdjustment; // A robust solver can only be used with dense matrices if (configSBA.optimizer.robustSolver) { configSBA.optimizer.lm.mixture = 0; bundleAdjustment = FactoryMultiView.bundleDenseMetric(true, configSBA); } else { bundleAdjustment = FactoryMultiView.bundleSparseMetric(configSBA); } // Print status to stdout if configured to do so bundleAdjustment.setVerbose(verbose, null); // Specifies convergence criteria bundleAdjustment.configure(configConvergeSBA.ftol, configConvergeSBA.gtol, configConvergeSBA.maxIterations); bundleAdjustment.setParameters(structure, observations); return bundleAdjustment.optimize(structure); } /** * Convert it into a data structure understood by {@link BundleAdjustment} */ public void convertIntoBundleStructure( List motions, DMatrixRMaj K, List homographies, List observations ) { structure = new SceneStructureMetric(false); structure.initialize(1, motions.size(), -1, 0, layouts.size()); this.observations = new SceneObservations(); this.observations.initialize(motions.size(), true); // A single camera is assumed, that's what is being calibrated! cameraGenerator.setLayouts(layouts); structure.setCamera(0, false, cameraGenerator.initializeCamera(K, homographies, observations)); // Specify the structure of calibration targets for (int layoutID = 0; layoutID < layouts.size(); layoutID++) { List layout = layouts.get(layoutID); // All the calibration targets are at the origin, the camera pivots around structure.setRigid(layoutID, true, new Se3_F64(), layout.size()); // Where the points are on the calibration target SceneStructureMetric.Rigid srigid = structure.rigids.get(layoutID); for (int i = 0; i < layout.size(); i++) { srigid.setPoint(i, layout.get(i).x, layout.get(i).y, 0); } } structure.assignIDsToRigidPoints(); // Add the initial estimate of each view's location and the points observed for (int viewIdx = 0; viewIdx < motions.size(); viewIdx++) { CalibrationObservation ca = observations.get(viewIdx); // Tell it thinks each view is structure.setView(viewIdx, 0, false, motions.get(viewIdx)); // Handle observations SceneStructureMetric.Rigid srigid = structure.rigids.get(ca.target); for (int j = 0; j < ca.size(); j++) { PointIndex2D_F64 p = ca.get(j); srigid.connectPointToView(p.index, viewIdx, (float)p.p.x, (float)p.p.y, this.observations); } } } public List computeErrors() { var errors = new ArrayList(); var parameters = new double[structure.getParameterCount()]; var residuals = new double[observations.getObservationCount()*2]; var codec = new CodecSceneStructureMetric(); codec.encode(structure, parameters); var function = new BundleAdjustmentMetricResidualFunction(); function.configure(structure, observations); function.process(parameters, residuals); int idx = 0; for (int i = 0; i < observations.viewsRigid.size; i++) { SceneObservations.View v = observations.viewsRigid.data[i]; var r = new ImageResults(v.size()); double sumX = 0; double sumY = 0; double meanErrorMag = 0; double maxError = 0; for (int j = 0; j < v.size(); j++) { double x = r.residuals[j*2] = residuals[idx++]; double y = r.residuals[j*2 + 1] = residuals[idx++]; double nerr = r.pointError[j] = Math.sqrt(x*x + y*y); meanErrorMag += nerr; maxError = Math.max(maxError, nerr); sumX += x; sumY += y; } r.biasX = sumX/v.size(); r.biasY = sumY/v.size(); r.meanError = meanErrorMag/v.size(); r.maxError = maxError; errors.add(r); } return errors; } public CameraModel getCameraModel() { return cameraGenerator.getCameraModel(structure.cameras.get(0).model); } /** * Applies radial and tangential distortion to the normalized image coordinate. * * @param normPt point in normalized image coordinates * @param radial radial distortion parameters * @param t1 tangential parameter * @param t2 tangential parameter */ public static void applyDistortion( Point2D_F64 normPt, double[] radial, double t1, double t2 ) { final double x = normPt.x; final double y = normPt.y; double a = 0; double r2 = x*x + y*y; double r2i = r2; for (int i = 0; i < radial.length; i++) { a += radial[i]*r2i; r2i *= r2; } normPt.x = x + x*a + 2*t1*x*y + t2*(r2 + 2*x*x); normPt.y = y + y*a + t1*(r2 + 2*y*y) + 2*t2*x*y; } public static int totalPoints( List observations ) { int total = 0; for (int i = 0; i < observations.size(); i++) { total += observations.get(i).size(); } return total; } @Override public void setVerbose( @Nullable PrintStream out, @Nullable Set configuration ) { this.verbose = BoofMiscOps.addPrefix(this, out); } /** * Minimum number of calibration points in a single target that must be observed for it to process the image */ public int getMinimumObservedPoints() { return Zhang99ComputeTargetHomography.MINIMUM_POINTS; } public interface Listener { /** * Updated to update the status and request that processing be stopped * * @param taskName Name of the task being performed * @return true to continue and false to request a stop */ boolean zhangUpdate( String taskName ); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy