All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.calibration.Zhang99CalibrationMatrixFromHomographies Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.calibration;

import lombok.Getter;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.MatrixFeatures_DDRM;
import org.ejml.dense.row.linsol.svd.SolveNullSpaceSvd_DDRM;

import java.util.List;

/**
 * 

* Estimates camera calibration matrix from a set of homographies using linear algebra. Based upon the * description found in [1], but has been modified to improve stability and flexibility. Two * variants are implemented inside this class. One variant assumes that the skew is zero and requires two or * more homographies and the other variant does not assume the skew is zero and requires three or more * homographies. The calibration matrix structure is shown below. *

* *

* Calibration matrix is defined as follows:
* [ α c u0 ]
* [ 0 β v0 ]
* [ 0 0 1 ]
* where 'c' is the camera's skew. *

* *

* The zero skew variant is a modification of what was described in [1]. Instead of simply adding another row * to force the skew to be zero that entire part of the equation has been omitted. The algorithm described in * [1] was numerically unstable and did not produce meaningful results. *

* *

* [1] Zhengyou Zhang, "Flexible Camera Calibration By Viewing a Plane From Unknown Orientations,", * International Conference on Computer Vision (ICCV'99), Corfu, Greece, pages 666-673, September 1999. *

*/ public class Zhang99CalibrationMatrixFromHomographies { // system of equations private DMatrixRMaj A = new DMatrixRMaj(1, 1); private SolveNullSpaceSvd_DDRM solverNull = new SolveNullSpaceSvd_DDRM(); // a vectorized description of the B = A^-T * A^-1 matrix. private DMatrixRMaj b = new DMatrixRMaj(1, 1); // the found calibration matrix private DMatrixRMaj K = new DMatrixRMaj(3, 3); /** if it should assume the skew is zero or not */ @Getter private boolean assumeZeroSkew; /** * Configures calibration estimation. * * @param assumeZeroSkew Assume that skew matrix is zero or not */ public Zhang99CalibrationMatrixFromHomographies( boolean assumeZeroSkew ) { setAssumeZeroSkew(assumeZeroSkew); } public Zhang99CalibrationMatrixFromHomographies() {} /** * Specifies if it should assume skew is zero or not * * @param zeroSkew true if skew is zero */ public void setAssumeZeroSkew( boolean zeroSkew ) { this.assumeZeroSkew = zeroSkew; if (assumeZeroSkew) b.reshape(5, 1); else b.reshape(6, 1); } /** * Given a set of homographies computed from a sequence of images that observe the same * plane it estimates the camera's calibration. * * @param homographies Homographies computed from observations of the calibration grid. */ public void process( List homographies ) { if (assumeZeroSkew) { if (homographies.size() < 2) throw new IllegalArgumentException("At least two homographies are required. Found " + homographies.size()); } else if (homographies.size() < 3) { throw new IllegalArgumentException("At least three homographies are required. Found " + homographies.size()); } if (assumeZeroSkew) { setupA_NoSkew(homographies); if (!solverNull.process(A, 1, b)) throw new RuntimeException("SVD failed"); computeParam_ZeroSkew(); } else { setupA(homographies); if (!solverNull.process(A, 1, b)) throw new RuntimeException("SVD failed"); computeParam(); } if (MatrixFeatures_DDRM.hasUncountable(K)) { throw new RuntimeException("Failed!"); } } /** * Sets up the system of equations which are to be solved. This equation is derived from * constraints (3) and (4) in the paper. See section 3.1. * * @param homographies set of observed homographies. */ private void setupA( List homographies ) { A.reshape(2*homographies.size(), 6, false); DMatrixRMaj h1 = new DMatrixRMaj(3, 1); DMatrixRMaj h2 = new DMatrixRMaj(3, 1); DMatrixRMaj v12 = new DMatrixRMaj(1, 6); DMatrixRMaj v11 = new DMatrixRMaj(1, 6); DMatrixRMaj v22 = new DMatrixRMaj(1, 6); DMatrixRMaj v11m22 = new DMatrixRMaj(1, 6); for (int i = 0; i < homographies.size(); i++) { DMatrixRMaj H = homographies.get(i); CommonOps_DDRM.extract(H, 0, 3, 0, 1, h1, 0, 0); CommonOps_DDRM.extract(H, 0, 3, 1, 2, h2, 0, 0); // normalize H by the max value to reduce numerical error when computing A // several numbers are multiplied against each other and could become quite large/small double max1 = CommonOps_DDRM.elementMaxAbs(h1); double max2 = CommonOps_DDRM.elementMaxAbs(h2); double max = Math.max(max1, max2); CommonOps_DDRM.divide(h1, max); CommonOps_DDRM.divide(h2, max); // compute elements of A computeV(h1, h2, v12); computeV(h1, h1, v11); computeV(h2, h2, v22); CommonOps_DDRM.subtract(v11, v22, v11m22); CommonOps_DDRM.insert(v12, A, i*2, 0); CommonOps_DDRM.insert(v11m22, A, i*2 + 1, 0); } } /** * Similar to {@link #setupA(List)} but all references to B12 have been removed * since it will always be zero when the skew is zero * * @param homographies set of observed homographies. */ private void setupA_NoSkew( List homographies ) { A.reshape(2*homographies.size(), 5, false); DMatrixRMaj h1 = new DMatrixRMaj(3, 1); DMatrixRMaj h2 = new DMatrixRMaj(3, 1); DMatrixRMaj v12 = new DMatrixRMaj(1, 5); DMatrixRMaj v11 = new DMatrixRMaj(1, 5); DMatrixRMaj v22 = new DMatrixRMaj(1, 5); DMatrixRMaj v11m22 = new DMatrixRMaj(1, 5); for (int i = 0; i < homographies.size(); i++) { DMatrixRMaj H = homographies.get(i); CommonOps_DDRM.extract(H, 0, 3, 0, 1, h1, 0, 0); CommonOps_DDRM.extract(H, 0, 3, 1, 2, h2, 0, 0); // normalize H by the max value to reduce numerical error when computing A // several numbers are multiplied against each other and could become quite large/small double max1 = CommonOps_DDRM.elementMaxAbs(h1); double max2 = CommonOps_DDRM.elementMaxAbs(h2); double max = Math.max(max1, max2); CommonOps_DDRM.divide(h1, max); CommonOps_DDRM.divide(h2, max); // compute elements of A computeV_NoSkew(h1, h2, v12); computeV_NoSkew(h1, h1, v11); computeV_NoSkew(h2, h2, v22); CommonOps_DDRM.subtract(v11, v22, v11m22); CommonOps_DDRM.insert(v12, A, i*2, 0); CommonOps_DDRM.insert(v11m22, A, i*2 + 1, 0); } } /** * This computes the v_ij vector found in the paper. */ private void computeV( DMatrixRMaj h1, DMatrixRMaj h2, DMatrixRMaj v ) { double h1x = h1.get(0, 0); double h1y = h1.get(1, 0); double h1z = h1.get(2, 0); double h2x = h2.get(0, 0); double h2y = h2.get(1, 0); double h2z = h2.get(2, 0); v.set(0, 0, h1x*h2x); v.set(0, 1, h1x*h2y + h1y*h2x); v.set(0, 2, h1y*h2y); v.set(0, 3, h1z*h2x + h1x*h2z); v.set(0, 4, h1z*h2y + h1y*h2z); v.set(0, 5, h1z*h2z); } /** * This computes the v_ij vector found in the paper. Leaving out components that would * interact with B12, since that is known to be zero. */ private void computeV_NoSkew( DMatrixRMaj h1, DMatrixRMaj h2, DMatrixRMaj v ) { double h1x = h1.get(0, 0); double h1y = h1.get(1, 0); double h1z = h1.get(2, 0); double h2x = h2.get(0, 0); double h2y = h2.get(1, 0); double h2z = h2.get(2, 0); v.set(0, 0, h1x*h2x); v.set(0, 1, h1y*h2y); v.set(0, 2, h1z*h2x + h1x*h2z); v.set(0, 3, h1z*h2y + h1y*h2z); v.set(0, 4, h1z*h2z); } /** * Compute the calibration parameters from the b matrix. */ private void computeParam() { // reduce overflow/underflow CommonOps_DDRM.divide(b, CommonOps_DDRM.elementMaxAbs(b)); double B11 = b.get(0, 0); double B12 = b.get(1, 0); double B22 = b.get(2, 0); double B13 = b.get(3, 0); double B23 = b.get(4, 0); double B33 = b.get(5, 0); double temp0 = B12*B13 - B11*B23; double temp1 = B11*B22 - B12*B12; double v0 = temp0/temp1; double lambda = B33 - (B13*B13 + v0*temp0)/B11; // Using abs() inside is an adhoc modification to make it more stable // If there is any good theoretical reason for it, that's a pure accident. Seems // to work well in practice double a = Math.sqrt(Math.abs(lambda/B11)); double b = Math.sqrt(Math.abs(lambda*B11/temp1)); double c = -B12*b/B11; double u0 = c*v0/a - B13/B11; K.set(0, 0, a); K.set(0, 1, c); K.set(0, 2, u0); K.set(1, 1, b); K.set(1, 2, v0); K.set(2, 2, 1); } /** * Compute the calibration parameters from the b matrix when the skew is assumed to be zero */ private void computeParam_ZeroSkew() { // reduce overflow/underflow CommonOps_DDRM.divide(b, CommonOps_DDRM.elementMaxAbs(b)); double B11 = b.get(0, 0); double B22 = b.get(1, 0); double B13 = b.get(2, 0); double B23 = b.get(3, 0); double B33 = b.get(4, 0); double temp0 = -B11*B23; double temp1 = B11*B22; double v0 = temp0/temp1; double lambda = B33 - (B13*B13 + v0*temp0)/B11; // Using abs() inside is an adhoc modification to make it more stable // If there is any good theoretical reason for it, that's a pure accident. Seems // to work well in practice double a = Math.sqrt(Math.abs(lambda/B11)); double b = Math.sqrt(Math.abs(lambda*B11/temp1)); double u0 = -B13/B11; K.set(0, 0, a); K.set(0, 1, 0); K.set(0, 2, u0); K.set(1, 1, b); K.set(1, 2, v0); K.set(2, 2, 1); } /** * Returns the computed calibration matrix. * * @return Calibration matrix. */ public DMatrixRMaj getCalibrationMatrix() { return K; } public SolveNullSpaceSvd_DDRM getSolverNull() { return solverNull; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy