All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.calibration.Zhang99DecomposeHomography Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.calibration;

import georegression.geometry.ConvertRotation3D_F64;
import georegression.geometry.UtilVector3D_F64;
import georegression.struct.point.Vector3D_F64;
import georegression.struct.se.Se3_F64;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.NormOps_DDRM;
import org.ejml.dense.row.SpecializedOps_DDRM;

/**
 * 

* Decomposes a homography into rigid body motion (rotation and translation) utilizing specific * assumptions made inside the Zhang99 paper [1]. *

* *

* Let K and R be the calibration matrix and rotation matrix.
* R = [ r1 , r1 , r1 ]
* ri is the ith column in R.
* Then compute R using the column of the homography matrix: * r1 = λ*inv(K)*h1
* r2 = λ*inv(K)*h2
* r3 = cross(r1,r2)
* t = λ*inv(K)*h3
* t is the translation vector. The R computed above is only approximate and needs to be turned into * a real rotation matrix. *

* *

* [1] Zhengyou Zhang, "Flexible Camera Calibration By Viewing a Plane From Unknown Orientations,", * International Conference on Computer Vision (ICCV'99), Corfu, Greece, pages 666-673, September 1999. *

* * @author Peter Abeles */ @SuppressWarnings({"NullAway.Init"}) public class Zhang99DecomposeHomography { // Rows in rotation matrix DMatrixRMaj r1 = new DMatrixRMaj(3, 1); DMatrixRMaj r2 = new DMatrixRMaj(3, 1); // storage for translation vector DMatrixRMaj t = new DMatrixRMaj(3, 1); DMatrixRMaj temp = new DMatrixRMaj(3, 1); // storage for rotation matrix DMatrixRMaj R = new DMatrixRMaj(3, 3); // calibration matrix and its inverse DMatrixRMaj K; DMatrixRMaj K_inv = new DMatrixRMaj(3, 3); /** * Specifies the calibration matrix. * * @param K upper triangular calibration matrix. */ public void setCalibrationMatrix( DMatrixRMaj K ) { this.K = K; CommonOps_DDRM.invert(K, K_inv); } /** * Compute the rigid body motion that composes the homography matrix H. It is assumed * that H was computed using {@link Zhang99ComputeTargetHomography}. * * @param H homography matrix. * @return Found camera motion. */ public Se3_F64 decompose( DMatrixRMaj H ) { // step through each calibration grid and compute its parameters DMatrixRMaj h[] = SpecializedOps_DDRM.splitIntoVectors(H, true); // lambda = 1/norm(inv(K)*h1) or 1/norm(inv(K)*h2) // use the average to attempt to reduce error CommonOps_DDRM.mult(K_inv, h[0], temp); double lambda = NormOps_DDRM.normF(temp); CommonOps_DDRM.mult(K_inv, h[1], temp); lambda += NormOps_DDRM.normF(temp); lambda = 2.0/lambda; // compute the column in the rotation matrix CommonOps_DDRM.mult(lambda, K_inv, h[0], r1); CommonOps_DDRM.mult(lambda, K_inv, h[1], r2); CommonOps_DDRM.mult(lambda, K_inv, h[2], t); Vector3D_F64 v1 = UtilVector3D_F64.convert(r1); Vector3D_F64 v2 = UtilVector3D_F64.convert(r2); Vector3D_F64 v3 = v1.crossWith(v2); UtilVector3D_F64.createMatrix(R, v1, v2, v3); Se3_F64 ret = new Se3_F64(); // the R matrix is probably not a real rotation matrix. So find // the closest real rotation matrix ConvertRotation3D_F64.approximateRotationMatrix(R, ret.getR()); ret.getT().setTo(t.data[0], t.data[1], t.data[2]); return ret; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy