boofcv.alg.geo.f.EpipolarMinimizeGeometricError Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-geo Show documentation
Show all versions of boofcv-geo Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2021, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.geo.f;
import boofcv.alg.geo.PerspectiveOps;
import georegression.geometry.GeometryMath_F64;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point3D_F64;
import georegression.struct.point.Vector3D_F64;
import org.ddogleg.solver.Polynomial;
import org.ddogleg.solver.PolynomialOps;
import org.ddogleg.solver.PolynomialRoots;
import org.ddogleg.solver.RootFinderType;
import org.ejml.data.Complex_F64;
import org.ejml.data.DMatrixRMaj;
import java.util.List;
import static boofcv.misc.BoofMiscOps.pow2;
/**
* Given point correspondences x[1] and x[2] and a fundamental matrix F, compute the
* correspondences x'[1] and x'[2] which minimize the geometric error
* subject to x'[2] F' x'[1] = 0
*
*
* Page 318 in: R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003
*
*
* @author Peter Abeles
*/
public class EpipolarMinimizeGeometricError {
// Ft = inv(T2')*F*inv(T1)
DMatrixRMaj Ft = new DMatrixRMaj(3, 3);
// [1 0 -x1;0 1 -y1; 0 0 1];
DMatrixRMaj T1 = new DMatrixRMaj(3, 3);
// [1 0 -x2;0 1 -y2; 0 0 1];
DMatrixRMaj T2 = new DMatrixRMaj(3, 3);
FundamentalExtractEpipoles extract = new FundamentalExtractEpipoles();
Point3D_F64 e1 = new Point3D_F64();
Point3D_F64 e2 = new Point3D_F64();
// rotation matrices
DMatrixRMaj R1 = new DMatrixRMaj(3, 3);
DMatrixRMaj R2 = new DMatrixRMaj(3, 3);
// lines
Vector3D_F64 l1 = new Vector3D_F64();
Vector3D_F64 l2 = new Vector3D_F64();
PolynomialRoots rootFinder = PolynomialOps.createRootFinder(6, RootFinderType.EVD);
Polynomial poly = new Polynomial(6);
double solutionT;
/**
* Minimizes the geometric error
*
* @param F21 (Input) Fundamental matrix x2 * F21 * x1 == 0
* @param x1 (Input) Point 1 x-coordinate. Pixels
* @param y1 (Input) Point 1 y-coordinate. Pixels
* @param x2 (Input) Point 2 x-coordinate. Pixels
* @param y2 (Input) Point 2 y-coordinate. Pixels
* @param p1 (Output) Point 1. Pixels
* @param p2 (Output) Point 2. Pixels
* @return true if a solution was found or false if it failed
*/
public boolean process( DMatrixRMaj F21,
double x1, double y1, double x2, double y2,
Point2D_F64 p1, Point2D_F64 p2 ) {
// translations used to move points to the origin
assignTinv(T1, x1, y1);
assignTinv(T2, x2, y2);
// take F to the new coordinate system
// F1 = T2'*F*T1
PerspectiveOps.multTranA(T2, F21, T1, Ft);
extract.process(Ft, e1, e2);
// normalize so that e[x]*e[x] + e[y]*e[y] == 1
normalizeEpipole(e1);
normalizeEpipole(e2);
assignR(R1, e1);
assignR(R2, e2);
// Ft = R2*Ft*R1'
PerspectiveOps.multTranC(R2, Ft, R1, Ft);
double f1 = e1.z;
double f2 = e2.z;
double a = Ft.get(1, 1);
double b = Ft.get(1, 2);
double c = Ft.get(2, 1);
double d = Ft.get(2, 2);
if (!solvePolynomial(f1, f2, a, b, c, d))
return false;
if (!selectBestSolution(rootFinder.getRoots(), f1, f2, a, b, c, d))
return false;
// find the closeset point on the two lines below to the origin
double t = solutionT;
l1.setTo(t*f1, 1, -t);
l2.setTo(-f2*(c*t + d), a*t + b, c*t + d);
closestPointToOrigin(l1, e1); // recycle epipole storage
closestPointToOrigin(l2, e2);
// original coordinates
originalCoordinates(T1, R1, e1);
originalCoordinates(T2, R2, e2);
// back to 2D coordinates
p1.setTo(e1.x/e1.z, e1.y/e1.z);
p2.setTo(e2.x/e2.z, e2.y/e2.z);
return true;
}
void closestPointToOrigin( Vector3D_F64 l, Point3D_F64 p ) {
p.x = -l.x*l.z;
p.y = -l.y*l.z;
p.z = l.x*l.x + l.y*l.y;
}
void originalCoordinates( DMatrixRMaj T, DMatrixRMaj R, Point3D_F64 p ) {
GeometryMath_F64.multTran(R, p, p);
GeometryMath_F64.mult(T, p, p);
}
/**
* Solves for the roots of an ugly polynomial defined in 12.7 in book [1]
*
* Coefficients found using Sage Math
*
* {@code
* a,b,c,d,f1,f2,t = var('a,b,c,d,f1,f2,t')
* g = t*((a*t+b)^2 + f2^2*(c*t+d)^2)^2 - (a*d-b*c)*(1+f1^2*t^2)^2*(a*t+b)*(c*t+d)
* g.expand().collect(t)
* }
*/
public boolean solvePolynomial( double f1, double f2, double a, Double b, double c, double d ) {
double f1_2 = f1*f1;
double f1_4 = f1_2*f1_2;
double f2_2 = f2*f2;
double f2_4 = f2_2*f2_2;
double a_2 = a*a;
double b_2 = b*b;
double c_2 = c*c;
double d_2 = d*d;
double b_3 = b_2*b;
double d_3 = d_2*d;
double a_4 = a_2*a_2;
double b_4 = b_2*b_2;
double c_4 = c_2*c_2;
double d_4 = d_2*d_2;
poly.size = 6;
poly.c[5] = a*b*c_2*f1_4 - a_2*c*d*f1_4;
poly.c[4] = b_2*c_2*f1_4 - a_2*d_2*f1_4 + c_4*f2_4 + 2*a_2*c_2*f2_2 + a_4;
poly.c[3] = 2*(3*c_2*d_2*f2_4 + b_2*c_2*f1_2 - a_2*d_2*f1_2 + b_2*c_2*f2_2 + 4*a*b*c*d*f2_2 + a_2*d_2*f2_2 + 3*a_2*b_2);
poly.c[2] = (4*c*d_3*f2_4 + 2*b_2*c*d*f1_2 - 2*a*b*d_2*f1_2 + 4*b_2*c*d*f2_2 + 4*a*b*d_2*f2_2 + 4*a*b_3 + a*b*c_2 - a_2*c*d);
poly.c[1] = d_4*f2_4 + 2*b_2*d_2*f2_2 + b_4 + b_2*c_2 - a_2*d_2;
poly.c[0] = b_2*c*d - a*b*d_2;
return rootFinder.process(poly);
}
boolean selectBestSolution( List roots,
double f1, double f2, double a, Double b, double c, double d ) {
// cost at t=infinty, must do better than this
double best = 1.0/(f1*f1) + c*c/(a*a + f2*f2*c*c);
int bestIndex = -1;
for (int i = 0; i < roots.size(); i++) {
Complex_F64 cr = roots.get(i);
if (!cr.isReal())
continue;
double t = cr.real;
double left = t*t/(1 + f1*f1*t*t);
double right = pow2(c*t + d)/(pow2(a*t + b) + f2*f2*pow2(c*t + d));
double squaredDistance = left + right;
if (squaredDistance < best) {
best = squaredDistance;
bestIndex = i;
solutionT = t;
}
}
return bestIndex != -1;
}
// @formatter:off
static void assignTinv( DMatrixRMaj T, double x, double y ) {
T.data[0] = T.data[4] = T.data[8] = 1;
T.data[2] = x; T.data[5]= y;
}
static void assignR( DMatrixRMaj R , Point3D_F64 e ) {
R.data[0] = e.x; R.data[1] = e.y;
R.data[3] = -e.y; R.data[4] = e.x;
R.data[8] = 1;
}
// @formatter:on
static void normalizeEpipole( Point3D_F64 e ) {
double n = e.x*e.x + e.y*e.y;
e.divideIP(Math.sqrt(n));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy