All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.f.EssentialNister5 Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2024, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.f;

import boofcv.struct.geo.AssociatedPair;
import boofcv.struct.geo.AssociatedPair3D;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point3D_F64;
import org.ddogleg.solver.Polynomial;
import org.ddogleg.solver.PolynomialRoots;
import org.ddogleg.solver.impl.FindRealRootsSturm;
import org.ddogleg.solver.impl.WrapRealRootsSturm;
import org.ddogleg.struct.DogArray;
import org.ejml.data.Complex_F64;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.factory.LinearSolverFactory_DDRM;
import org.ejml.dense.row.linsol.qr.SolveNullSpaceQRP_DDRM;
import org.ejml.interfaces.SolveNullSpace;
import org.ejml.interfaces.linsol.LinearSolverDense;

import java.util.List;

/**
 * 

* Finds the essential matrix given exactly 5 corresponding points. The approach is described * in details in [1] and works by linearlizing the problem then solving for the roots in a polynomial. It * is considered one of the fastest and most stable solutions for the 5-point problem. *

* *

* THIS IMPLEMENTATION DOES NOT CONTAIN ALL THE OPTIMIZATIONS OUTLIED IN [1]. A full implementation is * quite involved. Example: SVD instead of the proposed QR factorization. *

* *

* NOTE: This solution could be generalized for an arbitrary number of points. However, it would complicate * the algorithm even more and isn't considered to be worth the effort. *

* *

* [1] David Nister "An Efficient Solution to the Five-Point Relative Pose Problem" * Pattern Analysis and Machine Intelligence, 2004 *

* * @author Peter Abeles */ public class EssentialNister5 { // Linear system describing p'*E*q = 0 private final DMatrixRMaj Q = new DMatrixRMaj(5, 9); // contains the span of A private final DMatrixRMaj nullspace = new DMatrixRMaj(9, 9); private final SolveNullSpace solverNull = new SolveNullSpaceQRP_DDRM(); // where all the ugly equations go private final HelperNister5 helper = new HelperNister5(); // the span containing E private final double[] X = new double[9]; private final double[] Y = new double[9]; private final double[] Z = new double[9]; private final double[] W = new double[9]; // unknowns for E = x*X + y*Y + z*Z + W private double x, y, z; // Solver for the linear system below LinearSolverDense solver = LinearSolverFactory_DDRM.linear(10); // Storage for linear systems private final DMatrixRMaj A1 = new DMatrixRMaj(10, 10); private final DMatrixRMaj A2 = new DMatrixRMaj(10, 10); private final DMatrixRMaj C = new DMatrixRMaj(10, 10); // Used for finding polynomial roots private final FindRealRootsSturm sturm = new FindRealRootsSturm(11, -1, 1e-10, 20, 20); private final PolynomialRoots rootFinder = new WrapRealRootsSturm(sturm); // private PolynomialRoots findRoots = new RootFinderCompanion(); private final Polynomial poly = new Polynomial(11); /** * Computes the essential matrix from point correspondences in normalized image coordinates. * * @param points Input: List of points correspondences in normalized image coordinates * @param solutions Output: Storage for the found solutions. . * @return true for success or false if a fault has been detected */ public boolean processNormalized( List points, DogArray solutions ) { if (points.size() != 5) throw new IllegalArgumentException("Exactly 5 points are required, not " + points.size()); solutions.reset(); // Computes the 4-vector span which contains E. See equations 7-9 computeSpan(points); return solveForSolutions(solutions); } /** * Computes the essential matrix from point correspondences represented by pointing vectors * * @param points Input: List of points correspondences as 3D pointing vectors * @param solutions Output: Storage for the found solutions. . * @return true for success or false if a fault has been detected */ public boolean processPointing( List points, DogArray solutions ) { if (points.size() != 5) throw new IllegalArgumentException("Exactly 5 points are required, not " + points.size()); solutions.reset(); // Computes the 4-vector span which contains E. See equations 7-9 computeSpan3(points); return solveForSolutions(solutions); } private boolean solveForSolutions( DogArray solutions ) { // Construct a linear system based on the 10 constraint equations. See equations 5,6, and 10 . helper.setNullSpace(X, Y, Z, W); helper.setupA1p1(A1); helper.setupA1p2(A1); helper.setupA2p1(A2); helper.setupA2p2(A2); // instead of Gauss-Jordan elimination LU decomposition is used to solve the system if (!solver.setA(A1)) return false; solver.solve(A2, C); // construct the z-polynomial matrix. Equations 11-14 helper.setDeterminantVectors(C); helper.extractPolynomial(poly.getCoefficients()); if (!rootFinder.process(poly)) return false; List zeros = rootFinder.getRoots(); for (int rootIdx = 0; rootIdx < zeros.size(); rootIdx++) { Complex_F64 c = zeros.get(rootIdx); if (!c.isReal()) continue; solveForXandY(c.real); DMatrixRMaj E = solutions.grow(); for (int i = 0; i < 9; i++) { E.data[i] = x*X[i] + y*Y[i] + z*Z[i] + W[i]; } } return true; } /** * From the epipolar constraint p2^T*E*p1 = 0 construct a linear system and find its null space. */ private void computeSpan( List points ) { Q.reshape(points.size(), 9); int index = 0; for (int i = 0; i < points.size(); i++) { AssociatedPair p = points.get(i); Point2D_F64 a = p.p2; Point2D_F64 b = p.p1; // The points are assumed to be in homogeneous coordinates. This means z = 1 // @formatter:off Q.data[index++] = a.x*b.x; Q.data[index++] = a.x*b.y; Q.data[index++] = a.x; Q.data[index++] = a.y*b.x; Q.data[index++] = a.y*b.y; Q.data[index++] = a.y; Q.data[index++] = b.x; Q.data[index++] = b.y; Q.data[index++] = 1; // @formatter:on } if (!solverNull.process(Q, 4, nullspace)) throw new RuntimeException("Nullspace solver should never fail, probably bad input"); // extract the span of solutions for E from the null space for (int i = 0; i < 9; i++) { X[i] = nullspace.unsafe_get(i, 0); Y[i] = nullspace.unsafe_get(i, 1); Z[i] = nullspace.unsafe_get(i, 2); W[i] = nullspace.unsafe_get(i, 3); } } /** * From the epipolar constraint p2^T*E*p1 = 0 construct a linear system and find its null space. * Observations as pointing vectors. */ private void computeSpan3( List points ) { Q.reshape(points.size(), 9); int index = 0; for (int i = 0; i < points.size(); i++) { AssociatedPair3D p = points.get(i); Point3D_F64 a = p.p2; Point3D_F64 b = p.p1; // The points are assumed to be in homogeneous coordinates. This means z = 1 // @formatter:off Q.data[index++] = a.x*b.x; Q.data[index++] = a.x*b.y; Q.data[index++] = a.x*b.z; Q.data[index++] = a.y*b.x; Q.data[index++] = a.y*b.y; Q.data[index++] = a.y*b.z; Q.data[index++] = a.z*b.x; Q.data[index++] = a.z*b.y; Q.data[index++] = a.z*b.z; // @formatter:on } if (!solverNull.process(Q, 4, nullspace)) throw new RuntimeException("Nullspace solver should never fail, probably bad input"); // extract the span of solutions for E from the null space for (int i = 0; i < 9; i++) { X[i] = nullspace.unsafe_get(i, 0); Y[i] = nullspace.unsafe_get(i, 1); Z[i] = nullspace.unsafe_get(i, 2); W[i] = nullspace.unsafe_get(i, 3); } } DMatrixRMaj tmpA = new DMatrixRMaj(3, 2); DMatrixRMaj tmpY = new DMatrixRMaj(3, 1); DMatrixRMaj tmpX = new DMatrixRMaj(2, 1); /** * Once z is known then x and y can be solved for using the B matrix */ private void solveForXandY( double z ) { this.z = z; // solve for x and y using the first two rows of B tmpA.data[0] = ((helper.K00*z + helper.K01)*z + helper.K02)*z + helper.K03; tmpA.data[1] = ((helper.K04*z + helper.K05)*z + helper.K06)*z + helper.K07; tmpY.data[0] = (((helper.K08*z + helper.K09)*z + helper.K10)*z + helper.K11)*z + helper.K12; tmpA.data[2] = ((helper.L00*z + helper.L01)*z + helper.L02)*z + helper.L03; tmpA.data[3] = ((helper.L04*z + helper.L05)*z + helper.L06)*z + helper.L07; tmpY.data[1] = (((helper.L08*z + helper.L09)*z + helper.L10)*z + helper.L11)*z + helper.L12; tmpA.data[4] = ((helper.M00*z + helper.M01)*z + helper.M02)*z + helper.M03; tmpA.data[5] = ((helper.M04*z + helper.M05)*z + helper.M06)*z + helper.M07; tmpY.data[2] = (((helper.M08*z + helper.M09)*z + helper.M10)*z + helper.M11)*z + helper.M12; CommonOps_DDRM.scale(-1, tmpY); CommonOps_DDRM.solve(tmpA, tmpY, tmpX); this.x = tmpX.get(0, 0); this.y = tmpX.get(1, 0); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy