boofcv.alg.geo.f.EssentialResidualSampson Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of boofcv-geo Show documentation
Show all versions of boofcv-geo Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2021, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.geo.f;
import boofcv.alg.geo.ModelObservationResidual;
import boofcv.alg.geo.PerspectiveOps;
import boofcv.struct.calib.CameraPinhole;
import boofcv.struct.geo.AssociatedPair;
import georegression.geometry.GeometryMath_F64;
import georegression.struct.point.Point3D_F64;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
/**
*
* Computes the Sampson distance residual for a set of observations given an esesntial matrix. For use
* in least-squares non-linear optimization algorithms. Error is computed in pixels.
*
*
* 0 = x2T*F*x1
* E=K2'*F*K1
* F=inv(K2')*E*inv(K1)
* 0=(K2*n2)'inv(K2)'*E*inv(K1)*(K1*n2), where n1 and n2 are normalized image coordinates
*
* Page 287 in: R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003
*
*
* @author Peter Abeles
*/
@SuppressWarnings({"NullAway.Init"})
public class EssentialResidualSampson implements ModelObservationResidual {
DMatrixRMaj E;
DMatrixRMaj K2E = new DMatrixRMaj(3, 3);
DMatrixRMaj EK1 = new DMatrixRMaj(3, 3);
Point3D_F64 temp = new Point3D_F64();
DMatrixRMaj K1_inv = new DMatrixRMaj(3, 3);
DMatrixRMaj K2_inv = new DMatrixRMaj(3, 3);
public void setCalibration1( CameraPinhole pinhole ) {
DMatrixRMaj K = new DMatrixRMaj(3, 3);
PerspectiveOps.pinholeToMatrix(pinhole, K);
CommonOps_DDRM.invert(K, K1_inv);
}
public void setCalibration2( CameraPinhole pinhole ) {
DMatrixRMaj K = new DMatrixRMaj(3, 3);
PerspectiveOps.pinholeToMatrix(pinhole, K);
CommonOps_DDRM.invert(K, K2_inv);
}
@Override
public void setModel( DMatrixRMaj E ) {
this.E = E;
CommonOps_DDRM.multTransA(K2_inv, E, K2E);
CommonOps_DDRM.mult(E, K1_inv, EK1);
}
@Override
public double computeResidual( AssociatedPair observation ) {
double bottom = 0;
GeometryMath_F64.mult(K2E, observation.p1, temp);
bottom += temp.x*temp.x + temp.y*temp.y;
GeometryMath_F64.multTran(EK1, observation.p2, temp);
bottom += temp.x*temp.x + temp.y*temp.y;
if (bottom == 0) {
return Double.MAX_VALUE;
} else {
GeometryMath_F64.multTran(E, observation.p2, temp);
return (temp.x*observation.p1.x + temp.y*observation.p1.y + temp.z)/bottom;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy