All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.f.FundamentalLinear Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.f;

import boofcv.alg.geo.MassageSingularValues;
import boofcv.alg.geo.NormalizationPoint2D;
import boofcv.misc.BoofLambdas;
import boofcv.struct.geo.AssociatedPair;
import georegression.struct.point.Point2D_F64;
import lombok.Getter;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.linsol.svd.SolveNullSpaceSvd_DDRM;
import org.ejml.interfaces.SolveNullSpace;

import java.util.List;

/**
 * 

* Base class for linear algebra based algorithms for computing the Fundamental/Essential matrices. *

* *

* The computed fundamental matrix follow the following convention (with no noise) for the associated pair: * x2T*F*x1 = 0
* x1 = keyLoc and x2 = currLoc. *

* * @author Peter Abeles */ public abstract class FundamentalLinear { // contains the set of equations that are solved protected DMatrixRMaj A = new DMatrixRMaj(1, 9); // svd used to extract the null space protected SolveNullSpace solverNull = new SolveNullSpaceSvd_DDRM(); // Used to put a matrix onto essential or fundamental space protected MassageSingularValues massger = new MassageSingularValues(); protected BoofLambdas.ProcessObject opEssential; protected BoofLambdas.ProcessObject opFundamental; // matrix used to normalize results protected NormalizationPoint2D N1 = new NormalizationPoint2D(); protected NormalizationPoint2D N2 = new NormalizationPoint2D(); /** should it compute a fundamental (true) or essential (false) matrix? */ @Getter boolean computeFundamental; /** * Specifies which type of matrix is to be computed * * @param computeFundamental true it computes a fundamental matrix and false for essential */ protected FundamentalLinear( boolean computeFundamental ) { this.computeFundamental = computeFundamental; opEssential = ( W ) -> { // project it into essential space // the scale factor is arbitrary, but the first two singular values need // to be the same. so just set them to one W.unsafe_set(0, 0, 1); W.unsafe_set(1, 1, 1); W.unsafe_set(2, 2, 0); }; opFundamental = ( W ) -> { // the smallest singular value needs to be set to zero, unlike W.set(2, 2, 0); }; } /** * Projects the found estimate of E onto essential space. * * @return true if svd returned true. */ protected boolean projectOntoEssential( DMatrixRMaj E ) { return massger.process(E, opEssential); } /** * Projects the found estimate of F onto Fundamental space. * * @return true if svd returned true. */ protected boolean projectOntoFundamentalSpace( DMatrixRMaj F ) { return massger.process(F, opFundamental); } /** * Reorganizes the epipolar constraint equation (xT2*F*x1 = 0) such that it * is formulated as a standard linear system of the form Ax=0. Where A contains the pixel locations and x is * the reformatted fundamental matrix. * * @param points Set of associated points in left and right images. * @param A Matrix where the reformatted points are written to. */ protected void createA( List points, DMatrixRMaj A ) { A.reshape(points.size(), 9, false); A.zero(); Point2D_F64 f_norm = new Point2D_F64(); Point2D_F64 s_norm = new Point2D_F64(); final int size = points.size(); for (int i = 0; i < size; i++) { AssociatedPair p = points.get(i); Point2D_F64 f = p.p1; Point2D_F64 s = p.p2; // normalize the points N1.apply(f, f_norm); N2.apply(s, s_norm); // perform the Kronecker product with the two points being in // homogeneous coordinates (z=1) A.unsafe_set(i, 0, s_norm.x*f_norm.x); A.unsafe_set(i, 1, s_norm.x*f_norm.y); A.unsafe_set(i, 2, s_norm.x); A.unsafe_set(i, 3, s_norm.y*f_norm.x); A.unsafe_set(i, 4, s_norm.y*f_norm.y); A.unsafe_set(i, 5, s_norm.y); A.unsafe_set(i, 6, f_norm.x); A.unsafe_set(i, 7, f_norm.y); A.unsafe_set(i, 8, 1); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy