All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.f.FundamentalLinear7 Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.f;

import boofcv.alg.geo.LowLevelMultiViewOps;
import boofcv.alg.geo.PerspectiveOps;
import boofcv.struct.geo.AssociatedPair;
import org.ddogleg.solver.Polynomial;
import org.ddogleg.solver.PolynomialRoots;
import org.ddogleg.solver.PolynomialSolver;
import org.ddogleg.solver.RootFinderType;
import org.ddogleg.struct.DogArray;
import org.ejml.data.Complex_F64;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.SpecializedOps_DDRM;

import java.util.Arrays;
import java.util.List;

/**
 * 

* Computes the essential or fundamental matrix using exactly 7 points with linear algebra. The number of required points * is reduced from 8 to 7 by enforcing the singularity constraint, det(F) = 0. The number of solutions found is * either one or three depending on the number of real roots found in the quadratic. *

* *

* The computed fundamental matrix follow the following convention (with no noise) for the associated pair: * x2T*F*x1 = 0
* x1 = keyLoc and x2 = currLoc. *

* *

* References: *

    *
  • R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003
  • *
*

* * @author Peter Abeles */ public class FundamentalLinear7 extends FundamentalLinear { // extracted from the null space of A protected DMatrixRMaj F1 = new DMatrixRMaj(3, 3); protected DMatrixRMaj F2 = new DMatrixRMaj(3, 3); private final DMatrixRMaj nullspace = new DMatrixRMaj(1, 1); // temporary storage for cubic coefficients private final Polynomial poly = new Polynomial(4); private final PolynomialRoots rootFinder = PolynomialSolver.createRootFinder(RootFinderType.EVD, 4); /** * When computing the essential matrix normalization is optional because pixel coordinates * * @param computeFundamental true it computes a fundamental matrix and false for essential */ public FundamentalLinear7( boolean computeFundamental ) { super(computeFundamental); } /** *

* Computes a fundamental or essential matrix from a set of associated point correspondences. *

* * @param points Input: List of corresponding image coordinates. In pixel for fundamental matrix or * normalized coordinates for essential matrix. * @param solutions Output: Storage for the found solutions. * @return true If successful or false if it failed */ public boolean process( List points, DogArray solutions ) { if (points.size() != 7) throw new IllegalArgumentException("Must be exactly 7 points. Not " + points.size() + " you gelatinous piece of pond scum."); // reset data structures solutions.reset(); // must normalize for when points are in either pixel or calibrated units // TODO re-evaluate decision to normalize for calibrated case LowLevelMultiViewOps.computeNormalization(points, N1, N2); // extract F1 and F2 from two null spaces createA(points, A); if (!process(A)) return false; // Undo normalization on F PerspectiveOps.multTranA(N2.matrix(null), F1, N1.matrix(null), F1); PerspectiveOps.multTranA(N2.matrix(null), F2, N1.matrix(null), F2); // compute polynomial coefficients computeCoefficients(F1, F2, poly.c); // Find polynomial roots and solve for Fundamental matrices computeSolutions(solutions); return true; } /** * Computes the SVD of A and extracts the essential/fundamental matrix from its null space */ private boolean process( DMatrixRMaj A ) { if (!solverNull.process(A, 2, nullspace)) return false; SpecializedOps_DDRM.subvector(nullspace, 0, 0, 9, false, 0, F1); SpecializedOps_DDRM.subvector(nullspace, 0, 1, 9, false, 0, F2); return true; } /** *

* Find the polynomial roots and for each root compute the Fundamental matrix. * Given the two matrices it will compute an alpha such that the determinant is zero.
* * det(&alpha*F1 + (1-α)*F2 ) = 0 *

*/ public void computeSolutions( DogArray solutions ) { if (!rootFinder.process(poly)) return; List zeros = rootFinder.getRoots(); for (int rootIdx = 0; rootIdx < zeros.size(); rootIdx++) { Complex_F64 c = zeros.get(rootIdx); if (!c.isReal() && Math.abs(c.imaginary) > 1e-10) continue; DMatrixRMaj F = solutions.grow(); double a = c.real; double b = 1 - c.real; for (int i = 0; i < 9; i++) { F.data[i] = a*F1.data[i] + b*F2.data[i]; } // det(F) = 0 is already enforced, but for essential matrices it needs to enforce // that the first two singular values are zero and the last one is zero if (!computeFundamental && !projectOntoEssential(F)) { solutions.removeTail(); } } } /** *

* Computes the coefficients such that the following is true:
* * det(&alpha*F1 + (1-α)*F2 ) = c0 + c1*α + c22 + c23
*

* * @param F1 a fundamental matrix * @param F2 a fundamental matrix * @param coefs Where results are returned. */ public static void computeCoefficients( DMatrixRMaj F1, DMatrixRMaj F2, double coefs[] ) { Arrays.fill(coefs, 0); computeCoefficients(F1, F2, 0, 4, 8, coefs, false); computeCoefficients(F1, F2, 1, 5, 6, coefs, false); computeCoefficients(F1, F2, 2, 3, 7, coefs, false); computeCoefficients(F1, F2, 2, 4, 6, coefs, true); computeCoefficients(F1, F2, 1, 3, 8, coefs, true); computeCoefficients(F1, F2, 0, 5, 7, coefs, true); } public static void computeCoefficients( DMatrixRMaj F1, DMatrixRMaj F2, int i, int j, int k, double coefs[], boolean minus ) { if (minus) computeCoefficientsMinus(F1.data[i], F1.data[j], F1.data[k], F2.data[i], F2.data[j], F2.data[k], coefs); else computeCoefficients(F1.data[i], F1.data[j], F1.data[k], F2.data[i], F2.data[j], F2.data[k], coefs); } public static void computeCoefficients( double x1, double y1, double z1, double x2, double y2, double z2, double coefs[] ) { coefs[3] += x1*(y1*(z1 - z2) + y2*(z2 - z1)) + x2*(y1*(z2 - z1) + y2*(z1 - z2)); coefs[2] += x1*(y1*z2 + y2*(z1 - 2*z2)) + x2*(y1*(z1 - 2*z2) + y2*(3*z2 - 2*z1)); coefs[1] += x1*y2*z2 + x2*(y1*z2 + y2*(z1 - 3*z2)); coefs[0] += x2*y2*z2; } public static void computeCoefficientsMinus( double x1, double y1, double z1, double x2, double y2, double z2, double coefs[] ) { coefs[3] -= x1*(y1*(z1 - z2) + y2*(z2 - z1)) + x2*(y1*(z2 - z1) + y2*(z1 - z2)); coefs[2] -= x1*(y1*z2 + y2*(z1 - 2*z2)) + x2*(y1*(z1 - 2*z2) + y2*(3*z2 - 2*z1)); coefs[1] -= x1*y2*z2 + x2*(y1*z2 + y2*(z1 - 3*z2)); coefs[0] -= x2*y2*z2; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy