boofcv.alg.geo.f.FundamentalToProjective Maven / Gradle / Ivy
Show all versions of boofcv-geo Show documentation
/*
* Copyright (c) 2021, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.geo.f;
import boofcv.alg.geo.impl.ProjectiveToIdentity;
import boofcv.misc.ConfigConverge;
import georegression.geometry.GeometryMath_F64;
import georegression.struct.point.Point3D_F64;
import georegression.struct.point.Vector3D_F64;
import georegression.struct.point.Vector4D_F64;
import org.ddogleg.optimization.FactoryOptimization;
import org.ddogleg.optimization.UnconstrainedLeastSquares;
import org.ddogleg.optimization.derivative.NumericalJacobianForward_DDRM;
import org.ddogleg.optimization.functions.FunctionNtoM;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.NormOps_DDRM;
/**
* Computes projective camera matrices from a fundamental matrix. All work space is predeclared and won't thrash
* the garbage collector.
*
* See section 9.5 in R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003
*
* @author Peter Abeles
*/
public class FundamentalToProjective {
private DMatrixRMaj outer = new DMatrixRMaj(3, 3);
private DMatrixRMaj KR = new DMatrixRMaj(3, 3);
FundamentalExtractEpipoles alg = new FundamentalExtractEpipoles();
Point3D_F64 e1 = new Point3D_F64();
Point3D_F64 e2 = new Point3D_F64();
Vector3D_F64 zero = new Vector3D_F64();
// used to convert P*H = [I|0]
ProjectiveToIdentity p2i = new ProjectiveToIdentity();
ConfigConverge convergence = new ConfigConverge(1e-8, 1e-8, 25);
UnconstrainedLeastSquares optimizer = FactoryOptimization.levenbergMarquardt(null, true);
FundamentalResidual residual = new FundamentalResidual();
NumericalJacobianForward_DDRM jacobian = new NumericalJacobianForward_DDRM(residual);
private double[] initialV = new double[3];
/**
*
* Given a fundamental matrix a pair of camera matrices P0 and P1 can be extracted. Same
* {@link #twoView(DMatrixRMaj, DMatrixRMaj)} but with the suggested values for all variables filled in for you.
*
*
* @param F (Input) Fundamental Matrix
* @param cameraMatrix (Output) resulting projective camera matrix P'. (3 by 4) Known up to a projective transform.
*/
public void twoView( DMatrixRMaj F, DMatrixRMaj cameraMatrix ) {
alg.process(F, e1, e2);
twoView(F, e2, zero, 1, cameraMatrix);
}
/**
*
* Given a fundamental matrix a pair of camera matrices P and P1' are extracted. The camera matrices
* are 3 by 4 and used to project a 3D homogenous point onto the image plane. These camera matrices will only
* be known up to a projective transform, thus there are multiple solutions, The canonical camera
* matrix is defined as:
*
* P=[I|0] and P'= [M|-M*t] = [[e']*F + e'*v^t | lambda*e']
*
* where e' is the epipole FTe' = 0, [e'] is the cross product matrix for the enclosed vector,
* v is an arbitrary 3-vector and lambda is a non-zero scalar.
*
*
*
* NOTE: Additional information is needed to upgrade this projective transform into a metric transform.
*
*
* Page 256 in R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003
*
*
* @param F (Input) A fundamental matrix
* @param e2 (Input) Left epipole of fundamental matrix, FT*e2 = 0.
* @param v (Input) Arbitrary 3-vector. Just pick some value, say (0,0,0).
* @param lambda (Input) A non zero scalar. Try one.
* @param cameraMatrix (Output) resulting projective camera matrix P'. (3 by 4) Known up to a projective transform.
*/
public void twoView( DMatrixRMaj F, Point3D_F64 e2, Vector3D_F64 v, double lambda,
DMatrixRMaj cameraMatrix ) {
GeometryMath_F64.outerProd(e2, v, outer);
GeometryMath_F64.multCrossA(e2, F, KR);
CommonOps_DDRM.add(KR, outer, KR);
CommonOps_DDRM.insert(KR, cameraMatrix, 0, 0);
cameraMatrix.set(0, 3, lambda*e2.x);
cameraMatrix.set(1, 3, lambda*e2.y);
cameraMatrix.set(2, 3, lambda*e2.z);
}
/**
*
* Given three fundamental matrices describing the relationship between three views, compute a consistent
* set of projective camera matrices. Consistent means that the camera matrices will give back the same
* fundamental matrices. Non-linear refinement might be needed to get an optimal solution.
*
*
* The first camera matrix, without loss of generality, P1 = [I|0].
*
* NOTE: HZ does not recommend using this function because the optimal solution is not geometric and prone
* to errors. Instead it recommends use of trifocal tensor to find a set of camera matrices. When testing
* the function it was noted that the geometry had to be carefully selected to ensure stability. Hinting that
* it might not be the most practical algorithm in real data.
*
*
* - Page 301 in Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, "An Invitation to 3-D Vision"
* Springer-Verlad, 2004
* - Page 386 and 255 in R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003
*
*
* @param F21 (Input) Fundamental matrix between view 1 and 2
* @param F31 (Input) Fundamental matrix between view 1 and 3
* @param F32 (Input) Fundamental matrix between view 2 and 3
* @param P2 (Output) Camera matrix for view 2
* @param P3 (Output) Camera matrix for view 3
*/
public boolean threeView( DMatrixRMaj F21, DMatrixRMaj F31, DMatrixRMaj F32,
DMatrixRMaj P2, DMatrixRMaj P3 ) {
// left epipoles. renamed to make code easier to read
Point3D_F64 e21 = e1;
Point3D_F64 e31 = e2;
alg.process(F21, null, e21);
twoView(F21, e21, zero, 1, P2);
alg.process(F31, null, e31);
// find transform which will make P2 = [I|0]
if (!p2i.process(P2))
return false;
// Perform non-linear optimization to find the parameters for u and minimize the difference
residual.setF31(F31, e31);
residual.setF32(F32);
residual.setH(p2i.getPseudoInvP(), p2i.getU());
// optimizer.setVerbose(System.out,0);
optimizer.setFunction(residual, jacobian);
optimizer.initialize(initialV, convergence.ftol, convergence.gtol);
for (int i = 0; i < convergence.maxIterations; i++) {
if (optimizer.iterate())
break;
}
P3.setTo(residual.computeP3(optimizer.getParameters()));
// // used to sanity check the found solution
// double err[] = new double[9];
// residual.process(optimizer.getParameters(),err);
// residual.F32.print();
// residual.F32_est.print();
return true;
}
public double getThreeViewError() {
return optimizer.getFunctionValue();
}
public ConfigConverge getConvergence() {
return convergence;
}
/**
* Residual function used to minimize the difference between two versions of the F32 fundamental matrix.
* One version is computed from F21 and F31. The other version was provided by the user.
*/
@SuppressWarnings({"NullAway.Init"})
class FundamentalResidual implements FunctionNtoM {
// Input F32
DMatrixRMaj F32 = new DMatrixRMaj(3, 3);
// Computed F32
DMatrixRMaj F32_est = new DMatrixRMaj(3, 3);
// computed P3
DMatrixRMaj P3 = new DMatrixRMaj(3, 4);
// H = [P2inv | u ]; P2*H = [I|0]
DMatrixRMaj P2inv; //pseudo inverse
Vector4D_F64 u = new Vector4D_F64();
// input fundamental matrix F31
DMatrixRMaj F31;
// epipole from F31
Point3D_F64 T31;
// Storage for decomposition of P3
DMatrixRMaj R = new DMatrixRMaj(3, 3);
Vector3D_F64 a = new Vector3D_F64();
// work space for input parameters
Vector3D_F64 v = new Vector3D_F64();
@Override
public void process( double[] input, double[] output ) {
// given the current value of v, compute P3
// P3 = [cross(T31)'*F31 + T31*v' | T31 ]
computeP3(input);
// [R,T] = [P3*P2 | P3*u]
CommonOps_DDRM.mult(P3, P2inv, R);
GeometryMath_F64.mult(P3, u, a);
// Compute the new fundamental matrix
GeometryMath_F64.multCrossA(a, R, F32_est);
// TODO sign ambuguity?
// Put into a common scale so that it can be compared against F32
double n = NormOps_DDRM.normF(F32_est);
CommonOps_DDRM.scale(1.0/n, F32_est);
for (int i = 0; i < 9; i++) {
output[i] = F32_est.data[i] - F32.data[i];
}
}
@Override
public int getNumOfInputsN() {
return 3;
}
@Override
public int getNumOfOutputsM() {
return 9;
}
public DMatrixRMaj computeP3( double[] input ) {
v.x = input[0];
v.y = input[1];
v.z = input[2];
FundamentalToProjective.this.twoView(F31, T31, v, 1, P3);
return P3;
}
public void setF31( DMatrixRMaj F31, Point3D_F64 T31 ) {
this.F31 = F31;
this.T31 = T31;
}
public void setF32( DMatrixRMaj F32 ) {
this.F32.setTo(F32);
double n = NormOps_DDRM.normF(this.F32);
CommonOps_DDRM.scale(1.0/n, this.F32);
}
/**
* H = [P2inv | u ]
*/
public void setH( DMatrixRMaj P2inv, DMatrixRMaj u ) {
this.P2inv = P2inv;
this.u.x = u.data[0];
this.u.y = u.data[1];
this.u.z = u.data[2];
this.u.w = u.data[3];
}
}
}