All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.f.ParamFundamentalEpipolar Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.f;

import boofcv.alg.geo.MultiViewOps;
import georegression.struct.point.Point3D_F64;
import org.ddogleg.fitting.modelset.ModelCodec;
import org.ejml.UtilEjml;
import org.ejml.data.DMatrixRMaj;
import org.ejml.simple.SimpleMatrix;

/**
 * 

* Parameterizes F by specifying the first two columns and the third being a linear combination of * the first two. By setting one of the elements in f1 or f2 to be one, it can achieve the minimum * possible parameter size of 7. Care is taken to avoid the degenerate case when f1 and f2 * are linearly dependent. *

*

* F=[f1 , f2 , αf1 + β f2] *

* *

* Page 286 in: R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003 *

* * @author Peter Abeles */ public class ParamFundamentalEpipolar implements ModelCodec { // order of columns int col0, col1, col2; // map from index in parameter to index in F // last index is the one index int indexes[] = new int[6]; @Override public int getParamLength() { return 7; } /** * Examines the matrix structure to determine how to parameterize F. */ @Override public void encode( DMatrixRMaj F, double[] param ) { // see which columns are to be used selectColumns(F); // set the largest element in the first two columns and normalize // using that value double v[] = new double[]{F.get(0, col0), F.get(1, col0), F.get(2, col0), F.get(0, col1), F.get(1, col1), F.get(2, col1)}; double divisor = selectDivisor(v, param); // solve for alpha and beta and put into param SimpleMatrix A = new SimpleMatrix(3, 2); SimpleMatrix y = new SimpleMatrix(3, 1); for (int i = 0; i < 3; i++) { A.set(i, 0, v[i]); A.set(i, 1, v[i + 3]); y.set(i, 0, F.get(i, col2)/divisor); } SimpleMatrix x = A.solve(y); param[5] = x.get(0); param[6] = x.get(1); } /** * The divisor is the element in the first two columns that has the largest absolute value. * Finds this element, sets col0 to be the row which contains it, and specifies which elements * in that column are to be used. * * @return Value of the divisor */ private double selectDivisor( double v[], double param[] ) { double maxValue = 0; int maxIndex = 0; for (int i = 0; i < v.length; i++) { if (Math.abs(v[i]) > maxValue) { maxValue = Math.abs(v[i]); maxIndex = i; } } double divisor = v[maxIndex]; int index = 0; for (int i = 0; i < v.length; i++) { v[i] /= divisor; if (i != maxIndex) { // save first 5 parameters param[index] = v[i]; // save indexes in the matrix int col = i < 3 ? col0 : col1; indexes[index++] = 3*(i%3) + col; } } // index of 1 int col = maxIndex >= 3 ? col1 : col0; indexes[5] = 3*(maxIndex%3) + col; return divisor; } private void selectColumns( DMatrixRMaj F ) { Point3D_F64 e1 = new Point3D_F64(); Point3D_F64 e2 = new Point3D_F64(); MultiViewOps.extractEpipoles(F, e1, e2); // if the right epipole lies at infinity (z=0) then don't use the first two columns if (Math.abs(e2.z) <= UtilEjml.EPS) { col0 = 1; col1 = 2; col2 = 0; } else { col0 = 0; col1 = 1; col2 = 2; } } @Override public void decode( double[] input, DMatrixRMaj F ) { F.data[indexes[0]] = input[0]; F.data[indexes[1]] = input[1]; F.data[indexes[2]] = input[2]; F.data[indexes[3]] = input[3]; F.data[indexes[4]] = input[4]; F.data[indexes[5]] = 1; double alpha = input[5]; double beta = input[6]; F.data[col2] = alpha*F.data[col0] + beta*F.data[col1]; F.data[col2 + 3] = alpha*F.data[col0 + 3] + beta*F.data[col1 + 3]; F.data[col2 + 6] = alpha*F.data[col0 + 6] + beta*F.data[col1 + 6]; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy