All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.h.HomographyInducedStereo3Pts Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.h;

import boofcv.alg.geo.MultiViewOps;
import boofcv.alg.geo.f.EpipolarMinimizeGeometricError;
import boofcv.struct.geo.AssociatedPair;
import georegression.geometry.GeometryMath_F64;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point3D_F64;
import org.ddogleg.struct.DogArray;
import org.ejml.LinearSolverSafe;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.factory.LinearSolverFactory_DDRM;
import org.ejml.interfaces.linsol.LinearSolverDense;
import org.jetbrains.annotations.Nullable;

/**
 * 

* Computes the homography induced by a plane from 3 point correspondences. Works with both calibrated and * uncalibrated cameras. The Fundamental/Essential matrix must be known. The found homography will be from view 1 * to view 2. The passed in Fundamental matrix must have the following properties for each set of * point correspondences: x2*F*x1 = 0, where x1 and x2 are views of the point in image 1 and image 2 respectively. * For more information see [1]. *

* *

* [1] Page 332, R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003 *

* * @author Peter Abeles */ public class HomographyInducedStereo3Pts { // Input fundamental matrix private final DMatrixRMaj F21 = new DMatrixRMaj(3, 3); // Epipole in camera 2 private final Point3D_F64 e2 = new Point3D_F64(); // The found homography from view 1 to view 2 private final DMatrixRMaj H = new DMatrixRMaj(3, 3); // A = cross(e2)*F private final DMatrixRMaj A = new DMatrixRMaj(3, 3); // Rows filled with x from image 1 private final DMatrixRMaj M = new DMatrixRMaj(3, 3); private final DMatrixRMaj temp0 = new DMatrixRMaj(3, 1); private final DMatrixRMaj temp1 = new DMatrixRMaj(3, 1); private final Point3D_F64 A_inv_b = new Point3D_F64(); private final Point3D_F64 Ax = new Point3D_F64(); private final Point3D_F64 b = new Point3D_F64(); private final Point3D_F64 t0 = new Point3D_F64(); private final Point3D_F64 t1 = new Point3D_F64(); private final LinearSolverDense solver; // pick a reasonable scale and sign private final AdjustHomographyMatrix adjust = new AdjustHomographyMatrix(); // Adjusts points to minimize geometric error EpipolarMinimizeGeometricError adjusterEpipolar = new EpipolarMinimizeGeometricError(); private final DogArray adjustedPairs = new DogArray<>(AssociatedPair::new); public HomographyInducedStereo3Pts() { // ensure that the inputs are not modified solver = new LinearSolverSafe<>(LinearSolverFactory_DDRM.linear(3)); } /** * Specify the fundamental matrix and the camera 2 epipole. * * @param F Fundamental matrix. * @param e2 Epipole for camera 2. If null it will be computed internally. */ public void setFundamental( DMatrixRMaj F, @Nullable Point3D_F64 e2 ) { if (e2 != null) this.e2.setTo(e2); else { MultiViewOps.extractEpipoles(F, new Point3D_F64(), this.e2); } GeometryMath_F64.multCrossA(this.e2, F, A); this.F21.setTo(F); } /** * Estimates the homography from view 1 to view 2 induced by a plane from 3 point associations. * Each pair must pass the epipolar constraint. This can fail if the points are colinear. * * @param p1 Associated point observation * @param p2 Associated point observation * @param p3 Associated point observation * @return True if successful or false if it failed */ public boolean process( AssociatedPair p1, AssociatedPair p2, AssociatedPair p3 ) { // Computed corrected points that minimize epipolar error adjustedPairs.resize(3); adjustEpipolar(p1, adjustedPairs.get(0)); adjustEpipolar(p2, adjustedPairs.get(1)); adjustEpipolar(p3, adjustedPairs.get(2)); // The algorithm in the book doesn't appear to be terribly stable. // One possible way to improve it is to normalize the inputs so that they have a magnitude around one // This is a bit of a pain and nothing is using the code right now. I'm being lazy // but at least I'm documenting my laziness // LowLevelMultiViewOps.computeNormalization(adjustedPairs.toList(), N1, N2); // Fill rows of M with observations from image 1 fillM(adjustedPairs.get(0).p1, adjustedPairs.get(1).p1, adjustedPairs.get(2).p1); // Compute 'b' vector b.x = computeB(adjustedPairs.get(0).p2); b.y = computeB(adjustedPairs.get(1).p2); b.z = computeB(adjustedPairs.get(2).p2); // A_inv_b = inv(A)*b if (!solver.setA(M)) return false; GeometryMath_F64.toMatrix(b, temp0); solver.solve(temp0, temp1); GeometryMath_F64.toTuple3D(temp1, A_inv_b); GeometryMath_F64.addOuterProd(A, -1, e2, A_inv_b, H); // pick a good scale and sign for H adjust.adjust(H, p1); return true; } private void adjustEpipolar( AssociatedPair a, AssociatedPair adjusted ) { adjusterEpipolar.process(F21, a.p1.x, a.p1.y, a.p2.x, a.p2.y, adjusted.p1, adjusted.p2); } /** * Fill rows of M with observations from image 1 */ private void fillM( Point2D_F64 x1, Point2D_F64 x2, Point2D_F64 x3 ) { M.data[0] = x1.x; M.data[1] = x1.y; M.data[2] = 1; M.data[3] = x2.x; M.data[4] = x2.y; M.data[5] = 1; M.data[6] = x3.x; M.data[7] = x3.y; M.data[8] = 1; } /** * b = [(x cross (A*x))^T ( x cross e2 )] / || x cross e2 ||^2 */ private double computeB( Point2D_F64 x ) { GeometryMath_F64.mult(A, x, Ax); GeometryMath_F64.cross(x, Ax, t0); GeometryMath_F64.cross(x, e2, t1); double top = GeometryMath_F64.dot(t0, t1); double bottom = t1.normSq(); return top/bottom; } /** * The found homography from view 1 to view 2 * * @return homography */ public DMatrixRMaj getHomography() { return H; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy