All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.h.HomographyRadial6Pts Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2022, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.h;

import boofcv.misc.BoofMiscOps;
import boofcv.struct.geo.AssociatedPair;
import georegression.geometry.GeometryMath_F64;
import georegression.struct.point.Point2D_F64;
import lombok.Getter;
import lombok.Setter;
import org.ddogleg.struct.DogArray;
import org.ddogleg.struct.VerbosePrint;
import org.ejml.UtilEjml;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.SingularOps_DDRM;
import org.ejml.dense.row.factory.DecompositionFactory_DDRM;
import org.ejml.dense.row.factory.LinearSolverFactory_DDRM;
import org.ejml.interfaces.decomposition.SingularValueDecomposition_F64;
import org.ejml.interfaces.linsol.LinearSolver;
import org.jetbrains.annotations.Nullable;

import java.io.PrintStream;
import java.util.List;
import java.util.Set;

/**
 * 

Estimates homography between two views and independent radial distortion from each camera. Radial * distortion is modeled using the one parameter division model [1]. Implementation based * on the 6-point algorithm in [2] that solves 2 quadratic equations and 6 linear equations. See * Tech Report [3] for the final form of equations used in code below.

* * Undistortion model: *

f(x,y) = [x, y, 1 + λ(x**2 + y**2)]T

* where λ is the radial distortion parameter from one of the cameras. * *

NOTE: This assumes that the center of distortion is the center of the image. I.e. image center = (0,0)

*

NOTE: This will work on homographies induced from planes or pure rotations

*

NOTE: Modified from original description to handle > 6 points

* *
    *
  1. Fitzgibbon, Andrew W. "Simultaneous linear estimation of multiple view geometry and lens distortion." * CVPR 2001
  2. *
  3. Kukelova, Z., Heller, J., Bujnak, M., & Pajdla, T. "Radial distortion homography" (2015)
  4. *
  5. Peter Abeles, "Notes on Scene Reconstruction: BoofCV Technical Report", 2022
  6. *
* * @author Peter Abeles */ public class HomographyRadial6Pts implements VerbosePrint { // TODO redo division model to operate on normalized coordinates then update this code /** Higher the value the more well-formed observations are for this model. */ @Getter double crossSingularRatio; // Storage for cross product matrix and linear constraints matrix DMatrixRMaj A = new DMatrixRMaj(6, 8); // Storage for solution of linear system DMatrixRMaj Y = new DMatrixRMaj(6, 1); DMatrixRMaj X = new DMatrixRMaj(4, 1); // Storage for the two null spaces in the cross constraint DMatrixRMaj null1 = new DMatrixRMaj(8, 1); DMatrixRMaj null2 = new DMatrixRMaj(8, 1); // Storage for SVD DMatrixRMaj V = new DMatrixRMaj(1, 1); DMatrixRMaj W = new DMatrixRMaj(1, 1); /** Solves for null space */ @Setter SingularValueDecomposition_F64 svd = DecompositionFactory_DDRM.svd(6, 8, false, true, false); /** Linear solver used to find last 4 parameters */ @Setter LinearSolver solver = LinearSolverFactory_DDRM.qr(6, 6); // LinearSolver solver = LinearSolverFactory_DDRM.qrp(true, false); // LinearSolver solver = LinearSolverFactory_DDRM.pseudoInverse(true); // Storage for two hypotheses from quadratic formula DogArray hypotheses = new DogArray<>(Hypothesis::new); // True if exactly the minimum number of points that it can handle was passed in. This determines the // size of the null space boolean minimalPoints; // solutions to quadratic equation private final double[] quadraticSolutions = new double[2]; // The found solutions @Getter final DogArray found = new DogArray<>(Result::new); @Nullable PrintStream verbose; /** *

* Computes the homography matrix given a set of observed points in two images. A set of {@link AssociatedPair} * is passed in. The computed homography 'H' is found such that the attributes 'p1' and 'p2' in {@link AssociatedPair} * refers to x1 and x2, respectively, in the equation below:
* x2 = H*x1 *

* * To get the output call {@link #getFound()}. One way to evaluate multiple solutions to see which one is * best is to call {@link #computeResidualError(List, Result)}. * * @param points A set of observed image points that are generated from a planar object. Minimum of 6 pairs required. * @return True if successful. False if it failed. */ public boolean process( List points ) { if (points.size() < 6) throw new IllegalArgumentException("A minimum of 6 points is required"); found.reset(); if (!linearCrossConstraint(points)) { if (verbose != null) verbose.println("Failed at linear cross constraint"); return false; } if (minimalPoints) { // null space has a span of 2 if (!solveQuadraticRelationship()) { if (verbose != null) verbose.println("Failed at quadratic relationship"); return false; } } else { // only one vector defines the null space and is easier easyNullSpace(); } for (int i = 0; i < hypotheses.size; i++) { if (!solveForRemaining(points, hypotheses.get(i), found.grow())) { if (verbose != null) verbose.println("Failed at linear solver for 4 remaining parameters. A"); found.removeTail(); } } return !found.isEmpty(); } /** * Used to evaluate how good a hypothesis is by removing radial distortion from points then applying the found * homography. The difference between the observed undistorted point and the predicted point in view 2 is * the computed and summed across all points. * * @param points Observed point pairs * @param result Hypothesis * @return sqrt(sum residual error squared)/N */ public static double computeResidualError( List points, Result result ) { double error = 0.0; var undistorted = new AssociatedPair(); var found = new Point2D_F64(); for (int i = 0; i < points.size(); i++) { AssociatedPair a = points.get(i); // Remove lens distortion undistorted.setTo(a); undistorted.p1.scale(1.0/(1.0 + result.radial1*a.p1.normSq())); undistorted.p2.scale(1.0/(1.0 + result.radial2*a.p2.normSq())); // predict where undistorted point in other view will appear GeometryMath_F64.mult(result.H, undistorted.p1, found); // Compute the error error += found.distance2(undistorted.p2); } return Math.sqrt(error)/points.size(); } /** * Construct a matrix that encapsulates the constraint of applying cross product as a skew symmetric matrix to * input observations: * * alpha*x' = H*x * skew(x')*H*x = 0 * * @return true if no errors detected */ boolean linearCrossConstraint( List points ) { constructCrossConstraints(points); // Find the null space if (!svd.decompose(A)) return false; svd.getV(V, false); svd.getW(W); // Singular values are in an arbitrary order initially SingularOps_DDRM.descendingOrder(null, false, W, V, false); // Number of expected non-singular values minimalPoints = points.size() == 6; int fsv = minimalPoints ? 6 : 7; // If there is a well-defined null space then sv[rank] >>> sv[rank+1] // EPS in denominator to avoid divide by zero double sv1 = W.unsafe_get(fsv - 1, fsv - 1); double sv2 = W.numRows > fsv ? W.unsafe_get(fsv, fsv) : 0.0; crossSingularRatio = sv1/(UtilEjml.EPS + sv2); // Copy the null space. If rank is 6 then null space has a span of 2 if (minimalPoints) CommonOps_DDRM.extract(V, 0, 8, 6, 7, null1); CommonOps_DDRM.extract(V, 0, 8, 7, 8, null2); return true; } /** * Creates a matrix that represents linear constraints. Columns are for variables * [h11, h12, h13, h21, h22, h23, lambda*h13, lambda*h23] */ void constructCrossConstraints( List points ) { A.reshape(points.size(), 8); // NOTE: p2 = x' and p1 = x in paper for (int row = 0; row < points.size(); row++) { AssociatedPair p = points.get(row); int index = row*A.numCols; // x**2 + y**2 double r1 = p.p1.normSq(); // Matrix is stored in a row-major format. This is filling in a row A.data[index++] = -p.p2.y*p.p1.x; A.data[index++] = -p.p2.y*p.p1.y; A.data[index++] = -p.p2.y; A.data[index++] = p.p2.x*p.p1.x; A.data[index++] = p.p2.x*p.p1.y; A.data[index++] = p.p2.x; A.data[index++] = -p.p2.y*r1; A.data[index] = p.p2.x*r1; } } /** * The solution vector v1 = gamma*n1 + n2, where (n1, n2) are the previously found null space. * There is a known relationship between elements in n1 and n2 which is then exploited to create a * quadratic equation to solve for the unknown radial distortion. * * @return true if no errors detected */ boolean solveQuadraticRelationship() { hypotheses.reset(); // Note the conversion from 0 indexed to 1 indexed, so that variables match what's in the paper double n13 = null1.data[2]; double n16 = null1.data[5]; double n23 = null2.data[2]; double n26 = null2.data[5]; double n17 = null1.data[6]; double n18 = null1.data[7]; double n27 = null2.data[6]; double n28 = null2.data[7]; // Coefficients in quadratic equation: a*x**2 + b*x + c = 0 double a = n16*n17 - n13*n18; double b = n16*n27 + n17*n26 - n13*n28 - n18*n23; double c = n26*n27 - n23*n28; int numSolutions = BoofMiscOps.quadraticSolver(a, b, c, quadraticSolutions); if (numSolutions == 0) return false; for (int i = 0; i < numSolutions; i++) { hypotheses.grow().gamma = quadraticSolutions[i]; } for (int i = 0; i < hypotheses.size; i++) { Hypothesis hypo = hypotheses.get(i); hypo.lambda = solveForLambdaGivenGamma(n13, n23, n17, n27, n16, n26, n18, n28, hypo.gamma); } return true; } /** * Only one vector defines the entire null space. Making determination of lambda easy. We set gamma to zero * so that null1 will be ignored later on */ void easyNullSpace() { hypotheses.reset(); Hypothesis hypo = hypotheses.grow(); hypo.gamma = 0.0; // Compute it two different ways and average them double a = null2.data[6]/null2.data[2]; double b = null2.data[7]/null2.data[5]; hypo.lambda = (a + b)/2.0; } /** * Create a linear system for the 4 remaining unknowns by feeding the known parameters into the second line of * matrix equation (4), see paper. * * @param points Observed points * @param hypo Hypothesis being considered * @param solution Resulting solution */ boolean solveForRemaining( List points, Hypothesis hypo, Result solution ) { A.reshape(points.size(), 4); Y.reshape(points.size(), 1); // Compute values of H which are now known from the previously computed null space double h11 = hypo.gamma*null1.data[0] + null2.data[0]; double h12 = hypo.gamma*null1.data[1] + null2.data[1]; double h13 = hypo.gamma*null1.data[2] + null2.data[2]; // NOTE: p2 = x' and p1 = x in paper for (int row = 0; row < points.size(); row++) { AssociatedPair p = points.get(row); double r1 = p.p1.normSq(); double w1 = 1.0 + hypo.lambda*r1; double r2 = p.p2.normSq(); int index = row*A.numCols; A.data[index++] = p.p2.x*p.p1.x; // H[31] A.data[index++] = p.p2.x*p.p1.y; // H[32] A.data[index++] = p.p2.x*w1; // H[33] A.data[index] = -r2*(h11*p.p1.x + h12*p.p1.y + h13*w1); // lambda' Y.data[row] = h11*p.p1.x + h12*p.p1.y + h13*w1; } // Solve for the unknowns if (!solver.setA(A)) return false; solver.solve(Y, X); // Save radial distortion parameter solution.radial1 = hypo.lambda; solution.radial2 = X.data[3]; // Save H directory to the array. solution.H.data[0] = h11; solution.H.data[1] = h12; solution.H.data[2] = h13; solution.H.data[3] = hypo.gamma*null1.data[3] + null2.data[3]; // h21 solution.H.data[4] = hypo.gamma*null1.data[4] + null2.data[4]; // h22 solution.H.data[5] = hypo.gamma*null1.data[5] + null2.data[5]; // h23 solution.H.data[6] = X.data[0]; // h31 solution.H.data[7] = X.data[1]; // h32 solution.H.data[8] = X.data[2]; // h33 return true; } @Override public void setVerbose( @Nullable PrintStream out, @Nullable Set configuration ) { this.verbose = BoofMiscOps.addPrefix(this, out); } /** Storage for internal parameters that define a hypothesis. See paper. */ static class Hypothesis { // how to combine the two null spaces to get the homography H public double gamma; // radial distortion parameter public double lambda; } private double solveForLambdaGivenGamma( double n13, double n23, double n17, double n27, double n16, double n26, double n18, double n28, double gamma ) { // Attempt to reduce numerical error by averaging the two equivalent formulas // might want to also consider just using the one with the larger denominator double solA = (gamma*n17 + n27)/(gamma*n13 + n23); double solB = (gamma*n18 + n28)/(gamma*n16 + n26); return (solA + solB)/2.0; } /** * Estimated homography matrix and radial distortion terms */ public static class Result { /** Homography between the two views */ public final DMatrixRMaj H = new DMatrixRMaj(3, 3); /** Radial distortion in view-1 and view-2, respectively */ public double radial1, radial2; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy