All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.h.HomographyTotalLeastSquares Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 1.1.7
Show newest version
/*
 * Copyright (c) 2021, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.h;

import boofcv.alg.geo.LowLevelMultiViewOps;
import boofcv.alg.geo.NormalizationPoint2D;
import boofcv.struct.geo.AssociatedPair;
import org.ejml.data.DMatrix2x2;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.fixed.CommonOps_DDF2;
import org.ejml.dense.row.CommonOps_DDRM;
import org.ejml.dense.row.linsol.svd.SolveNullSpaceSvd_DDRM;
import org.ejml.interfaces.SolveNullSpace;

import java.util.List;

/**
 * 

Direct method for computing homography that is more computationally efficient and stable than DLT. Takes * advantage of the sparse structure of the matrix found in {@link HomographyDirectLinearTransform DLT} to reduce * the number of computations and EYM matrix approximation. See the paper [1] for details. Requires at least * four points.

* * *

[1] Harker, Matthew, and Paul O'Leary. "Computation of Homographies." BMVC. 2005.

* * @author Peter Abeles */ public class HomographyTotalLeastSquares { // Solver for null space SolveNullSpace solverNull = new SolveNullSpaceSvd_DDRM(); DMatrixRMaj nullspace = new DMatrixRMaj(3, 1); // Used to normalize input points protected NormalizationPoint2D N1 = new NormalizationPoint2D(); protected NormalizationPoint2D N2 = new NormalizationPoint2D(); // X1 = (x[i],y[i]; ... ) and X2 = (x[i]',y[i]'; ... ) // X1 = hat{P} X2 = X' <-- paper notation DMatrixRMaj X1 = new DMatrixRMaj(1, 1); DMatrixRMaj X2 = new DMatrixRMaj(1, 1); // Reduced matrix for solving for 6,7,8 DMatrixRMaj A = new DMatrixRMaj(1, 1); // Storage for intermediate steps private DMatrixRMaj P_plus = new DMatrixRMaj(1, 1); private double XP_bar[] = new double[4]; /** *

* Computes the homography matrix given a set of observed points in two images. A set of {@link AssociatedPair} * is passed in. The computed homography 'H' is found such that the attributes 'p1' and 'p2' in {@link AssociatedPair} * refers to x1 and x2, respectively, in the equation below:
* x2 = H*x1 *

* * @param points A set of observed image points that are generated from a planar object. Minimum of 4 pairs required. * @param foundH Output: Storage for the found solution. 3x3 matrix. * @return true if the calculation was a success. */ public boolean process( List points, DMatrixRMaj foundH ) { if (points.size() < 4) throw new IllegalArgumentException("Must be at least 4 points."); // Have to normalize the points. Being zero mean is essential in its derivation LowLevelMultiViewOps.computeNormalization(points, N1, N2); LowLevelMultiViewOps.applyNormalization(points, N1, N2, X1, X2); // Construct the linear system which is used to solve for H[6] to H[8] constructA678(); // Solve for those elements using the null space if (!solverNull.process(A, 1, nullspace)) return false; DMatrixRMaj H = foundH; H.data[6] = nullspace.data[0]; H.data[7] = nullspace.data[1]; H.data[8] = nullspace.data[2]; // Determine H[0] to H[5] H.data[2] = -(XP_bar[0]*H.data[6] + XP_bar[1]*H.data[7]); H.data[5] = -(XP_bar[2]*H.data[6] + XP_bar[3]*H.data[7]); backsubstitution0134(P_plus, X1, X2, H.data); // Remove the normalization HomographyDirectLinearTransform.undoNormalizationH(foundH, N1, N2); CommonOps_DDRM.scale(1.0/foundH.get(2, 2), foundH); return true; } /** * Backsubstitution for solving for 0,1 and 3,4 using solution for 6,7,8 */ static void backsubstitution0134( DMatrixRMaj P_plus, DMatrixRMaj P, DMatrixRMaj X, double H[] ) { final int N = P.numRows; DMatrixRMaj tmp = new DMatrixRMaj(N*2, 1); double H6 = H[6]; double H7 = H[7]; double H8 = H[8]; for (int i = 0, index = 0; i < N; i++) { double x = -X.data[index], y = -X.data[index + 1]; double sum = P.data[index++]*H6 + P.data[index++]*H7 + H8; tmp.data[i] = x*sum; tmp.data[i + N] = y*sum; } double h0 = 0, h1 = 0, h3 = 0, h4 = 0; for (int i = 0; i < N; i++) { double P_pls_0 = P_plus.data[i]; double P_pls_1 = P_plus.data[i + N]; double tmp_i = tmp.data[i]; double tmp_j = tmp.data[i + N]; h0 += P_pls_0*tmp_i; h1 += P_pls_1*tmp_i; h3 += P_pls_0*tmp_j; h4 += P_pls_1*tmp_j; } H[0] = -h0; H[1] = -h1; H[3] = -h3; H[4] = -h4; } /** * Constructs equation for elements 6 to 8 in H */ void constructA678() { final int N = X1.numRows; // Pseudo-inverse of hat(p) computePseudo(X1, P_plus); DMatrixRMaj PPpXP = new DMatrixRMaj(1, 1); DMatrixRMaj PPpYP = new DMatrixRMaj(1, 1); computePPXP(X1, P_plus, X2, 0, PPpXP); computePPXP(X1, P_plus, X2, 1, PPpYP); DMatrixRMaj PPpX = new DMatrixRMaj(1, 1); DMatrixRMaj PPpY = new DMatrixRMaj(1, 1); computePPpX(X1, P_plus, X2, 0, PPpX); computePPpX(X1, P_plus, X2, 1, PPpY); //============ Equations 20 computeEq20(X2, X1, XP_bar); //============ Equation 21 A.reshape(N*2, 3); double XP_bar_x = XP_bar[0]; double XP_bar_y = XP_bar[1]; double YP_bar_x = XP_bar[2]; double YP_bar_y = XP_bar[3]; // Compute the top half of A for (int i = 0, index = 0, indexA = 0; i < N; i++, index += 2) { double x = -X2.data[i*2]; // X' double P_hat_x = X1.data[index]; // hat{P}[0] double P_hat_y = X1.data[index + 1]; // hat{P}[1] // x'*hat{p} - bar{X*P} - PPpXP A.data[indexA++] = x*P_hat_x - XP_bar_x - PPpXP.data[index]; A.data[indexA++] = x*P_hat_y - XP_bar_y - PPpXP.data[index + 1]; // X'*1 - PPx1 A.data[indexA++] = x - PPpX.data[i]; } // Compute the bottom half of A for (int i = 0, index = 0, indexA = N*3; i < N; i++, index += 2) { double x = -X2.data[i*2 + 1]; double P_hat_x = X1.data[index]; double P_hat_y = X1.data[index + 1]; // x'*hat{p} - bar{X*P} - PPpXP A.data[indexA++] = x*P_hat_x - YP_bar_x - PPpYP.data[index]; A.data[indexA++] = x*P_hat_y - YP_bar_y - PPpYP.data[index + 1]; // X'*1 - PPx1 A.data[indexA++] = x - PPpY.data[i]; } } static void computeEq20( DMatrixRMaj X, DMatrixRMaj P, double output[] ) { final int N = X.numRows; double a00 = 0, a01 = 0, a10 = 0, a11 = 0; for (int i = 0, index = 0; i < N; i++, index += 2) { double x1 = X.data[index]; double x2 = X.data[index + 1]; double p1 = P.data[index]; double p2 = P.data[index + 1]; a00 += x1*p1; a01 += x1*p2; a10 += x2*p1; a11 += x2*p2; } output[0] = -a00/N; output[1] = -a01/N; output[2] = -a10/N; output[3] = -a11/N; } /** * Computes inv(AT*A)*AT */ static void computePseudo( DMatrixRMaj A, DMatrixRMaj output ) { final int N = A.numRows; DMatrix2x2 m = new DMatrix2x2(); DMatrix2x2 m_inv = new DMatrix2x2(); for (int i = 0, index = 0; i < N; i++) { double a_i1 = A.data[index++]; double a_i2 = A.data[index++]; m.a11 += a_i1*a_i1; m.a12 += a_i1*a_i2; m.a22 += a_i2*a_i2; } m.a21 = m.a12; CommonOps_DDF2.invert(m, m_inv); output.reshape(2, N); for (int i = 0, index = 0; i < N; i++) { output.data[i] = A.data[index++]*m_inv.a11 + A.data[index++]*m_inv.a12; } int end = 2*N; for (int i = N, A_index = 0; i < end; i++) { output.data[i] = A.data[A_index++]*m_inv.a21 + A.data[A_index++]*m_inv.a22; } } /** * Computes P*P_plus*X*P. Takes in account the size of each matrix and does the multiplication in an order * to minimize memory requirements. A naive implementation requires a temporary array of NxN * * @param X A diagonal matrix */ static void computePPXP( DMatrixRMaj P, DMatrixRMaj P_plus, DMatrixRMaj X, int offsetX, DMatrixRMaj output ) { final int N = P.numRows; output.reshape(N, 2); // diag(X) * P <-- N x 2 for (int i = 0, index = 0; i < N; i++, index += 2) { double x = -X.data[index + offsetX]; output.data[index] = x*P.data[index]; output.data[index + 1] = x*P.data[index + 1]; } // A = P_plus*( diag(x)*P ) <-- 2 x 2 double a00 = 0, a01 = 0, a10 = 0, a11 = 0; for (int i = 0, index = 0; i < N; i++, index += 2) { a00 += P_plus.data[i]*output.data[index]; a01 += P_plus.data[i]*output.data[index + 1]; a10 += P_plus.data[i + N]*output.data[index]; a11 += P_plus.data[i + N]*output.data[index + 1]; } // P*A <-- N x 2 for (int i = 0, index = 0; i < N; i++, index += 2) { output.data[index] = P.data[index]*a00 + P.data[index + 1]*a10; output.data[index + 1] = P.data[index]*a01 + P.data[index + 1]*a11; } } /** * P*P_plus*X*1 */ static void computePPpX( DMatrixRMaj P, DMatrixRMaj P_plus, DMatrixRMaj X, int offsetX, DMatrixRMaj output ) { final int N = P.numRows; output.reshape(N, 1); // A=P_plus * X <-- 2x1 double a00 = 0, a10 = 0; for (int i = 0, indexX = offsetX; i < N; i++, indexX += 2) { double x = -X.data[indexX]; a00 += x*P_plus.data[i]; a10 += x*P_plus.data[i + N]; } // P*A for (int i = 0, indexP = 0; i < N; i++) { output.data[i] = a00*P.data[indexP++] + a10*P.data[indexP++]; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy